Search results for "Electronic Structure"

showing 10 items of 722 documents

When are thin films of metals metallic? Part III

1996

Abstract A large amount of experimental information has indicated that very thin films of metallic elements can exhibit nonmetallic behavior, even on metal substrates. These films undergo a gradual nonmetal to metal transition with increasing film density or thickness. The nonmetallic behavior can be related to electron localization due to strong electron-electron correlation in low dimensional systems, as indicated by the strong enhancement of electron effective mass. The evolution in the electronic structure associated with the nonmetal to metal transition bears a striking resemblance to the behavior observed for free metal clusters. Part I [1], outlined the general concepts of a nonmetal…

Phase transitionMaterials scienceMetal K-edgeMechanical EngineeringElectronic structureCondensed Matter PhysicsElectron localization functionMetalEffective mass (solid-state physics)NonmetalMechanics of MaterialsChemical physicsvisual_artvisual_art.visual_art_mediumGeneral Materials ScienceThin filmMaterials Science and Engineering: A
researchProduct

High-pressure phases, vibrational properties, and electronic structure ofNe(He)2andAr(He)2: A first-principles study

2009

We have carried out a comprehensive first-principles study of the energetic, structural, and electronic properties of solid rare-gas RG-helium binary compounds, in particular, NeHe2 and ArHe2, under pressure and at temperatures within the range of 0T2000 K. Our approach is based on density-functional theory and the generalized gradient approximation for the exchange-correlation energy; we rely on total Helmholtz freeenergy calculations performed within the quasiharmonic approximation for most of our analysis. In NeHe2, we find that at pressures of around 20 GPa the system stabilizes in the MgZn2 Laves structure, in accordance to what was suggested in previous experimental investigations. In…

Phase transitionMaterials scienceCondensed matter physicsElectronic structureHard spheresLaves phaseCondensed Matter PhysicsElectronic Optical and Magnetic Materialssymbols.namesakeAb initio quantum chemistry methodsHelmholtz free energyPhase (matter)symbolsPhase diagramPhysical Review B
researchProduct

ChemInform Abstract: Metal-Metal Bonding and Metallic Behavior in Some ABO2 Delafossites.

2010

We present results of ab initio band structure calculations on some ABO2 delafossite oxides that have both the A and B sites occupied by transition metals. This class of materials includes insulators as well as some of the most conducting oxides. The calculations have been performed in order to understand the nature of the metallic and insulating states and the extensive metal−metal bonding displayed by these materials. The effect of polytypism on the electronic structure is examined. Among the interesting aspects of the electronic structure of these materials are the contributions from both A and B atoms to states near the Fermi energy and the highly disperse nature of bands derived from t…

ChemistryAb initioFermi energyGeneral MedicineElectronic structureengineering.materialMetalDelafossiteTransition metalChemical physicsvisual_artAtomvisual_art.visual_art_mediumengineeringCondensed Matter::Strongly Correlated ElectronsElectronic band structureChemInform
researchProduct

Domain structure of epitaxial SrRuO3 thin films

2005

Growth of multidomains in epitaxial thin-film oxides is known to have a detrimental effect on some functional properties, and, thus, efforts are done to suppress them. It is commonly accepted that optimal properties of the metallic and ferromagnetic $\mathrm{SrRu}{\mathrm{O}}_{3}$ (SRO) epitaxies can only be obtained if vicinal $\mathrm{SrTi}{\mathrm{O}}_{3}$ (001) (STO) substrates are used. It is believed that this results from the suppression of multidomain structure in the SRO film. Here we revise this important issue. Nanometric films of SRO have been grown on STO(001) vicinal substrates with miscut $({\ensuremath{\theta}}_{V})$ angles in the $\ensuremath{\sim}0.04\ifmmode^\circ\else\te…

Pel·lícules finesMaterials scienceCondensed matter physicsThin films and nanosystemsSubstrate (electronics)Condensed Matter PhysicsEpitaxySuperfíciesPropietats elèctriquesElectronic Optical and Magnetic MaterialsFerromagnetismElectronic structure and electrical properties of surfacesDomain (ring theory)Structure of solids and liquidsOrthorhombic crystal systemThin filmSpectroscopyVicinal
researchProduct

Computational investigations of 18-electron triatomic sulfur–nitrogen anions

2018

MRCI-SD/def2-QZVP and PBE0/def2-QZVP calculations have been employed for the analysis of geometries, stabilities, and bonding of isomers of the 18-electron anions N2S2−, NS2−, and NSO−. Isomers of the isoelectronic neutral molecules SO2, S2O, S3, and O3 are included for comparison. The sulfur-centered acyclic NSN2−, NSS−, and NSO− anions are the most stable isomers of their respective molecular compositions. However, the nitrogen-centered isomers SNS− and SNO− lie close enough in energy to their more stable counterparts to allow their occurrence. The experimental structural information, where available, is in good agreement with the optimized bond parameters. The bonding in all investigate…

anionit010405 organic chemistryisomeriaTriatomic moleculeOrganic Chemistrychemistry.chemical_elementGeneral ChemistryElectron010402 general chemistrylaskennallinen kemia01 natural sciencesSulfurNitrogenCatalysis0104 chemical scienceselectronic structureschemistry18-electron triatomicssulfur–nitrogen anionsrikkiyhdisteetPhysical chemistryisomerstyppiyhdisteettheoretical calculations
researchProduct

UV–Vis, IR, Raman and theoretical characterization of a novel quinoid oligothiophene molecular material

2003

A quinoid-type oligothiophene, 3 0 ,4 0 -dibutyl-5,5 00 -bis(dicyanomethylene)-5,5 00 -dihidro-2,2 0 :5 0 ,2 00 -terthiophene, which can be viewed as an analog of TCNQ, has been investigated by spectroelectrochemistry and density functional theory calculations, in its neutral and dianionic states. Electrochemical data show that the molecule can be both reduced and oxidized at relatively low potentials. Upon reduction, both experiments and theory agree well with the generation of a dianionic charged species. The model shows that the electronic structure of the dianion is consistent with two anionic dicyanomethylene groups attached to a central terthienyl spine having an aromatic structure. T…

Organic ChemistryInfrared spectroscopyElectronic structurePhotochemistryElectrochemistryAnalytical ChemistryInorganic Chemistrysymbols.namesakechemistry.chemical_compoundTerthiopheneUltraviolet visible spectroscopychemistryComputational chemistrysymbolsMoleculeDensity functional theoryRaman spectroscopySpectroscopyJournal of Molecular Structure
researchProduct

First-Principles Computed Rate Constant for the O + O 2 Isotopic Exchange Reaction Now Matches Experiment

2018

We show, by performing exact time-independent quantum molecular scattering calculations, that the quality of the ground electronic state global potential energy surface appears to be of utmost importance in accurately obtaining even as strongly averaged quantities as kinetic rate constants. The oxygen isotope exchange reaction, 18O + 32O2, motivated by the understanding of a complex long-standing problem of isotopic ozone anomalies in the stratosphere and laboratory experiments, is explored in this context. The thermal rate constant for this key reaction is now in quantitative agreement with all experimental data available to date. A significant recent progress at the frontier of three rese…

Physics010304 chemical physics010504 meteorology & atmospheric sciencesScatteringспектроскопия[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]Context (language use)Electronic structureкинетические параметрыизотопный обмен01 natural sciences7. Clean energyComputational physics[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistryReaction rate constant0103 physical sciencesPotential energy surfaceхимические расчетыGeneral Materials ScienceScattering theoryPhysical and Theoretical ChemistrySpectroscopyQuantumComputingMilieux_MISCELLANEOUS0105 earth and related environmental sciences
researchProduct

On the relations between aromaticity and substituent effect

2019

Aromaticity/aromatic and substituent/substituent effects belong to the most commonly used terms in organic chemistry and related fields. The quantitative description of aromaticity is based on energetic, geometric (e.g., HOMA), magnetic (e.g., NICS) and reactivity criteria, as well as the properties of the electronic structure (e.g., FLU). The substituent effect can be described using either traditional Hammett-type substituent constants or characteristics based on quantum-chemistry. For this purpose, the energies of properly designed homodesmotic reactions and electron density distribution are used. In the first case, a descriptor named SESE (energy stabilizing the substituent effect) is o…

chemistry.chemical_classificationElectronic structure010405 organic chemistrySubstituentMolecular modelingAromaticityElectronic structure010402 general chemistryCondensed Matter PhysicsRing (chemistry)01 natural sciences0104 chemical scienceschemistry.chemical_compoundSubstituent effectCharge of the substituent active regionchemistryComputational chemistryIntramolecular forceSubstituent effect stabilization energyReactivity (chemistry)Physical and Theoretical ChemistryBenzeneAromatic hydrocarbonStructural Chemistry
researchProduct

Exploring the High-Temperature Frontier in Molecular Nanomagnets: From Lanthanides to Actinides.

2019

Molecular nanomagnets based on mononuclear metal complexes, also known as single-ion magnets (SIMs), are crossing challenging boundaries in molecular magnetism. From an experimental point of view, this class of magnetic molecules has expanded from lanthanoid complexes to both d-transition metal and actinoid complexes. From a theoretical point of view, more and more improved models have been developed, and we are now able not only to calculate the electronic structure of these systems on the basis of their molecular structures but also to unveil the role of vibrations in the magnetic relaxation processes, at least for lanthanoid and d-transition metal SIMs. This knowledge has allowed us to o…

LanthanideField (physics)010405 organic chemistryChemistryMagnetismMolecular nanomagnetsUNESCO::QUÍMICAActinideElectronic structure010402 general chemistryMagnetic hysteresis:QUÍMICA [UNESCO]01 natural sciences0104 chemical sciencesInorganic ChemistryChemical physicsMagnetPhysical and Theoretical ChemistryInorganic chemistry
researchProduct

Metal-Controlled Magnetoresistance at Room Temperature in Single-Molecule Devices

2017

The appropriate choice of the transition metal complex and metal surface electronic structure opens the possibility to control the spin of the charge carriers through the resulting hybrid molecule/metal spinterface in a single-molecule electrical contact at room temperature. The single-molecule conductance of a Au/molecule/Ni junction can be switched by flipping the magnetization direction of the ferromagnetic electrode. The requirements of the molecule include not just the presence of unpaired electrons: the electronic configuration of the metal center has to provide occupied or empty orbitals that strongly interact with the junction metal electrodes and that are close in energy to their F…

Magnetoresistance02 engineering and technologyElectronic structure010402 general chemistry01 natural sciencesBiochemistryCatalysisMetal L-edgesymbols.namesakeColloid and Surface ChemistryTransition metalMagnetoresistènciaSurface statesDensity functionalsCondensed matter physicsChemistryMagnetoresistanceFermi levelTeoria del funcional de densitatGeneral ChemistryEspintrònicaSpintronics021001 nanoscience & nanotechnology0104 chemical sciencesFerromagnetismsymbolsCondensed Matter::Strongly Correlated ElectronsElectron configuration0210 nano-technology
researchProduct