6533b7d0fe1ef96bd125a61a

RESEARCH PRODUCT

Metal-Controlled Magnetoresistance at Room Temperature in Single-Molecule Devices

José Antonio RealEliseo RuizAlbert C. AragonèsIsmael Díez-pérezFausto SanzDaniel AravenaFrancisco Javier Valverde-muñoz

subject

Magnetoresistance02 engineering and technologyElectronic structure010402 general chemistry01 natural sciencesBiochemistryCatalysisMetal L-edgesymbols.namesakeColloid and Surface ChemistryTransition metalMagnetoresistènciaSurface statesDensity functionalsCondensed matter physicsChemistryMagnetoresistanceFermi levelTeoria del funcional de densitatGeneral ChemistryEspintrònicaSpintronics021001 nanoscience & nanotechnology0104 chemical sciencesFerromagnetismsymbolsCondensed Matter::Strongly Correlated ElectronsElectron configuration0210 nano-technology

description

The appropriate choice of the transition metal complex and metal surface electronic structure opens the possibility to control the spin of the charge carriers through the resulting hybrid molecule/metal spinterface in a single-molecule electrical contact at room temperature. The single-molecule conductance of a Au/molecule/Ni junction can be switched by flipping the magnetization direction of the ferromagnetic electrode. The requirements of the molecule include not just the presence of unpaired electrons: the electronic configuration of the metal center has to provide occupied or empty orbitals that strongly interact with the junction metal electrodes and that are close in energy to their Fermi levels for one of the electronic spins only. The key ingredient for the metal surface is to provide an efficient spin texture induced by the spin-orbit coupling in the topological surface states that results in an efficient spin-dependent interaction with the orbitals of the molecule. The strong magnetoresistance effect found in this kind of single-molecule wire opens a new approach for the design of room-temperature nanoscale devices based on spin-polarized currents controlled at molecular level.

10.1021/jacs.6b11166http://hdl.handle.net/2445/154758