0000000000002789

AUTHOR

José Antonio Real

showing 310 related works from this author

Communication between iron(II) building blocks in cooperative spin transition phenomena

2003

[EN] In the present article we discuss the cooperative nature of the spin crossover phenomenon in iron(II) complexes, providing a perspective of the state of the art in this area. The first aspect we discuss is the role of the intermolecular interactions, more precisely the ¿-interactions, in mononuclear complexes. We show that by playing with the nature of the ligands, aliphatic, aromatic, or extended aromatic, it is possible to create stronger cohesive forces and receive a more cooperative response from the compound. In the next step the singular family of bipyrimidine-bridged iron(II) dinuclear compounds is presented as the simplest example of polynuclear spin crossover complexes exhibit…

genetic structuresStereochemistryChemistryIntermolecular forceSupramolecular chemistrySpin transitionSpin transitionIron(II) complexesInorganic ChemistryChemical physicsSpin crossoverFISICA APLICADAIntramolecular forceMaterials ChemistryMolecular magnetismPhysical and Theoretical ChemistrySupramolecular chemistryTopology (chemistry)Curse of dimensionalityCoordination Chemistry Reviews
researchProduct

Enhanced bistability by guest inclusion in Fe(ii) spin crossover porous coordination polymers

2012

Inclusion of thiourea guest molecules in the tridimensional spin crossover porous coordination polymers {[Fe(pyrazine)[M(CN)(4)]} (M = Pd, Pt) leads to novel clathrates exhibiting unprecedented large thermal hysteresis loops of ca. 60 K wide centered near room temperature.

Materials sciencePyrazineStereochemistryMetals and Alloyschemistry.chemical_elementGeneral ChemistryCatalysisSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsHysteresischemistry.chemical_compoundCrystallographychemistryThioureaSpin crossoverMaterials ChemistryCeramics and CompositesMoleculePlatinumThermal analysisPalladiumChemical Communications
researchProduct

Spin‐Crossover Complexes

2013

EurJIC is proud to present a bumper issue on Spin-Crossover Complexes. Our Guest Editors, Keith Murray, Hiroki Oshio and Jose Antonio Real, have worked hard to put together a fantastic issue. With a valuable personal account of the field by Philipp Gutlich and inspiring papers by leading experts, you will not be disappointed.

Inorganic ChemistryTheoretical physicsPersonal accountChemistrySpin crossoverField (Bourdieu)European Journal of Inorganic Chemistry
researchProduct

Influence of Host-Guest and Host-Host Interactions on the Spin-Crossover 3D Hofmann-type Clathrates {FeII(pina)[MI(CN)2]2·xMeOH (MI = Ag, Au)

2019

[EN] The synthesis, structural characterization and magnetic properties of two new isostructural porous 3D compounds with the general formula {FeII(pina)[MI(CN)2]2}·xMeOH (x = 0¿5; pina = N-(pyridin-4-yl)isonicotinamide; MI = AgI and x ~ 5 (1·xMeOH); MI = AuI and x ~ 5 (2·xMeOH)) are presented. The single-crystal X-ray diffraction analyses have revealed that the structure of 1·xMeOH (or 2·xMeOH) presents two equivalent doubly interpenetrated 3D frameworks stabilized by both argentophilic (or aurophilic) interactions and interligand C¿O···HC H-bonds. Despite the interpenetration of the networks, these compounds display accessible void volume capable of hosting up to five molecules of methano…

Hydrogen bondInorganic ChemistrySolventCrystallographychemistry.chemical_compoundchemistrySpin crossoverDesorptionFISICA APLICADAMoleculeIsonicotinamideMethanolPhysical and Theoretical ChemistryIsostructural
researchProduct

A Novel Dinuclear Fe II Spin‐Crossover Complex Based on a 2,2‐Bipyrimidine Bridge Ligand: [Fe(CH 3 bipy)(NCS) 2 ] 2 bpym

2004

The dinuclear iron(II) complex {[Fe(CH3bipy)(NCS)2]2bpym} has been synthesised and its crystal structure determined at 293 K. The magnetic properties display intramolecular antiferromagnetic coupling at 1 bar (J = −4.2 cm−1), and the onset of a pressure-induced spin conversion is observed at 11 kbar. Magnetic field Mossbauer measurements have been carried out at 4.2 K, and indicate that the HS species correspond to [HS-HS] pairs. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2004)

Inorganic ChemistryCrystallographyNuclear magnetic resonanceLigandChemistrySpin crossoverIntramolecular forceMössbauer spectroscopyCrystal structureSpin (physics)Antiferromagnetic couplingMagnetic fieldEuropean Journal of Inorganic Chemistry
researchProduct

Effect of Guest Molecules on Spin Transition Temperature in Loaded Hofmann‐Like Clathrates with Improved Porosity

2020

The synthesis, crystal structure, magnetic and calorimetric studies of a new clathrate compound of the Hofmann-type spin crossover (SCO) metal-organic framework (MOF) {Fe(bpb)[MII(CN)4]}·xGuest (bpb = bis(4-pyridyl)butadiyne, and MII = Ni, Pt) with characteristic fsc topology is reported. The framework {Fe(bpb)[MII(CN)4]} can host up to 1.5 guest molecules of (trifluoromethyl)benzene and display complete one-step cooperative SCO behavior. Our systematic study on {Fe(bpb)[Pt(CN)4]}·xGuest shows a general reciprocal correlation between the SCO temperature with the volume of the guest molecules.

010405 organic chemistryChemistrySpin transition010402 general chemistry01 natural sciences0104 chemical sciences3. Good healthInorganic ChemistryCrystallographySpin crossoverMoleculeMetal-organic frameworkHost–guest chemistryPorosityEuropean Journal of Inorganic Chemistry
researchProduct

Interplay of Antiferromagnetic Coupling and Spin Crossover in Dinuclear Iron(II) Complexes

2003

This article reports on the study of the interplay between magnetic coupling and spin transition in 2,2′-bipyrimidine (bpym)-bridged iron(II) dinuclear compounds. Coexistence of both phenomena has been observed in [Fe(bpym)(NCS)2]2bpym, [Fe(bpym)(NCSe)2]2bpym and [Fe(bt)(NCS)2]2bpym (bpym = 2,2′-bipyrimidine, bt = 2,2′-bithiazoline) by the action of external physical factors namely pressure or electromagnetic radiation. Competition between magnetic exchange and spin crossover has been studied in [Fe(bpym)(NCS)2]2bpym at 6.3 kbar. LIESST experiments carried out in [Fe(bpym)(NCSe)2]2bpym and [Fe(bt)(NCS)2]2bpym at 4.2 K have shown that is possible to achieve dinuclear molecules with different…

CrystallographySpin statesCondensed matter physicsChemistrySpin crossoverSpin transitionMoleculeInductive couplingLIESSTAntiferromagnetic couplingMagnetic exchange
researchProduct

Metal-Controlled Magnetoresistance at Room Temperature in Single-Molecule Devices

2017

The appropriate choice of the transition metal complex and metal surface electronic structure opens the possibility to control the spin of the charge carriers through the resulting hybrid molecule/metal spinterface in a single-molecule electrical contact at room temperature. The single-molecule conductance of a Au/molecule/Ni junction can be switched by flipping the magnetization direction of the ferromagnetic electrode. The requirements of the molecule include not just the presence of unpaired electrons: the electronic configuration of the metal center has to provide occupied or empty orbitals that strongly interact with the junction metal electrodes and that are close in energy to their F…

Magnetoresistance02 engineering and technologyElectronic structure010402 general chemistry01 natural sciencesBiochemistryCatalysisMetal L-edgesymbols.namesakeColloid and Surface ChemistryTransition metalMagnetoresistènciaSurface statesDensity functionalsCondensed matter physicsChemistryMagnetoresistanceFermi levelTeoria del funcional de densitatGeneral ChemistryEspintrònicaSpintronics021001 nanoscience & nanotechnology0104 chemical sciencesFerromagnetismsymbolsCondensed Matter::Strongly Correlated ElectronsElectron configuration0210 nano-technology
researchProduct

Guest Effect on Nanopatterned Spin-Crossover Thin Films

2011

International audience; Nanopatterned thin films of the metal–organic framework {Fe(bpac)[Pt(CN)4]} (bpac=bis(4‐pyridyl)acetylene) are elaborated by the combination of a sequential assembly process and a lithographic method. Raman microspectroscopy is used to probe the temperature dependence of the spin state of the iron(II) ions in the films (40–90 nm in thickness), and reveals an incomplete but cooperative spin transition comparable to that of the bulk material. Adsorption/desorption of pyridine guest molecules is found to have a substantial influence on the spin‐crossover properties of the thin layers. This interplay between host–guest and spin‐crossover properties in thin films and nano…

Materials scienceSpin statesSpin transitionNanotechnology02 engineering and technologyMicroscopy Atomic ForceSpectrum Analysis Raman010402 general chemistry01 natural sciencesBiomaterialssymbols.namesakeSpin crossoverMetals HeavyDesorptionTransition TemperatureGeneral Materials ScienceThin film[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsCyanidesThin layersTransition temperatureGeneral Chemistry021001 nanoscience & nanotechnologyNanostructures0104 chemical sciencessymbolsPhysical chemistrySpin Labels0210 nano-technologyRaman spectroscopyBiotechnology
researchProduct

Unprecedented multi-stable spin crossover molecular material with two thermal memory channels.

2013

et al.

Phase transitionStereochemistryIron010402 general chemistry01 natural sciencesCatalysisSpin crossoverPhase (matter)ThermalMolecular materialsAlkylHorizontal scan ratechemistry.chemical_classificationIntermolecular interactions010405 organic chemistryOrganic ChemistryIntermolecular forceGeneral Chemistry0104 chemical sciencesMolecular materialschemistryChemical physicsPhase transitionsFISICA APLICADACondensed Matter::Strongly Correlated ElectronsLIESST effectChemistry (Weinheim an der Bergstrasse, Germany)
researchProduct

Spin crossover in iron(II) complexes with ferrocene-bearing triazole-pyridine ligands.

2015

In the search for new multifunctional spin crossover molecular materials, here we describe the synthesis, crystal structures and magnetic and photomagnetic properties of the complexes trans-[Fe(Fctzpy)2(NCX)2]·CHCl3 where Fc-tzpy is the ferrocene-appended ligand 4-(2-pyridyl)-1H-1,2,3-triazol- 1-ylferrocene, X = S (1) and X = Se (2). Both complexes display thermal- and light-induced (LIESST) spin crossover properties characterised by T1/2 = 85 and 168 K, ΔS = 55 and 66 J K−1 mol−1 , ΔH = 4.7 and 11.1 kJ mol−1 and TLIESST = 47 K and 39 K for 1 and 2 respectively. The crystal structure of 1 and 2 measured at 275 K is consistent with the iron(II) ion in the high-spin state while the crystal st…

ChemistryLigandTriazoleCrystal structureLIESSTPyridine ligandIonInorganic Chemistrychemistry.chemical_compoundCrystallographyNuclear magnetic resonanceFerroceneSpin crossoverFISICA APLICADADalton transactions (Cambridge, England : 2003)
researchProduct

Guest induced reversible on–off switching of elastic frustration in a 3D spin crossover coordination polymer with room temperature hysteretic behavio…

2021

A binary reversible switch between low-temperature multi-step spin crossover (SCO), through the evolution of the population γHS(T) with high-spin (HS)-low-spin (LS) sequence: HS1LS0 (state 1) ↔ HS2/3LS1/3 (state 2) ↔ HS1/2LS1/2 (state 3) ↔ HS1/3LS2/3 (state 4) ↔ HS0LS1 (state 5), and complete one step hysteretic spin transition featuring 20 K wide thermal hysteresis centred at 290 K occurs in the three-dimensional (3D) Hofmann-type porous coordination polymer {FeII(3,8phen)[Au(CN)2]2}·xPhNO2 (3,8phen = 3,8-phenanthroline, PhNO2 = nitrobenzene), made up of two identical interpenetrated pcu-type frameworks. The included PhNO2 guest (x = 1, 1·PhNO2) acts as a molecular wedge between the interp…

Materials scienceSpin statesCoordination polymermedia_common.quotation_subjectPopulationSpin transitionFrustration010402 general chemistry01 natural scienceschemistry.chemical_compoundSpin crossoverMetastability[CHIM.CRIS]Chemical Sciences/CristallographySymmetry breakingeducationComputingMilieux_MISCELLANEOUSmedia_common[PHYS]Physics [physics]education.field_of_studyCondensed matter physics010405 organic chemistryGeneral Chemistry0104 chemical sciencesChemistrychemistry[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]
researchProduct

Thermal, pressure and light switchable spin-crossover materials

2005

This article reviews the most relevant chemical and structural aspects that influence the spin-crossover phenomenon (SCO). Special attention is focussed on the recent development of SCO coordination polymers. The different approaches currently being explored in order to achieve multifunctionality in SCO materials are discussed.

Inorganic ChemistrySpin crossoverChemistryThermalNanotechnologyLIESSTDalton Transactions
researchProduct

Wavelength selective light-induced magnetic effects in the binuclear spin crossover compound{[Fe(bt)(NCS)2]2(bpym)}

2007

Using Fourier transform infrared spectroscopy, x-ray diffraction, and magnetic susceptibility measurements under light irradiation, the selective light-induced excited spin state trapping (LIESST) and the reversible-LIESST effect have been evidenced and studied in depth in the binuclear spin crossover compound {[Fe(bt)(NCS)2]2bpym}. In this system, each magnetic site can switch from low spin (LS) to high spin (HS), so that three states exist, namely, the LS-LS, HS-LS, and HS-HS. All these techniques shine a new light on the high phototunability of this system. In addition to the direct photoswitching from the LS-LS to the HS-LS or to the HS-HS state, here we show that photoinduced switching…

Materials scienceSpin statesCondensed matter physics010405 organic chemistry010402 general chemistryCondensed Matter Physics01 natural sciencesMagnetic susceptibilityMolecular physicsLIESST0104 chemical sciencesElectronic Optical and Magnetic MaterialsCrystalSpin crossoverExcited stateIrradiationSpin (physics)Physical Review B
researchProduct

Very Long-Lived Photogenerated High-Spin Phase of a Multistable Spin-Crossover Molecular Material

2018

The spin-crossover compound [Fe(n-Bu-im)3(tren)](PF6)2 shows an unusual long relaxation time of 20 h after light-induced excited spin state trapping when irradiating at 80 K. This is more than 40 times longer than when irradiating at 10 K. Optical absorption spectroscopy, magnetometry, and X-ray diffraction using synchrotron radiation were used to characterize and explain the different relaxation behaviors of this compound after irradiation below and above 70 K. Rearrangement of the butyl chains of the ligands occurring during the relaxation after irradiation above 70 K is thought to be responsible for the unusually long relaxation time at this temperature.

Spin statesAbsorption spectroscopy010405 organic chemistryChemistryRelaxation (NMR)General Chemistry[CHIM.MATE]Chemical Sciences/Material chemistry[CHIM.INOR]Chemical Sciences/Inorganic chemistry010402 general chemistry01 natural sciencesBiochemistryMolecular physicsCatalysis0104 chemical sciencesColloid and Surface ChemistrySpin crossoverPhase (matter)Excited state[CHIM.COOR]Chemical Sciences/Coordination chemistryIrradiationSpin (physics)ComputingMilieux_MISCELLANEOUSJournal of the American Chemical Society
researchProduct

Symmetry breakings in a metal organic framework with a confined guest

2020

The MOF $[{\text{Fe(tvp)}}_{2}{(\text{NCS})}_{2}]\ifmmode\cdot\else\textperiodcentered\fi{}2\text{BzCHO}$ is demonstrated to undergo a complex sequence of phase transitions and spin-crossover behavior of its constitutive ${\text{Fe}}^{\text{II}}$ ions upon adsorption of benzaldehyde guest molecules. Our study, combining Raman and synchrotron x-ray diffraction measurements on a single crystal, reveals that the conversion from the pure high-spin to the pure low-spin phases implies a rich sequence of intermediate phases, with symmetry breaking forming at least three different space groups. These different symmetries involve spin-state ordering, ligand ordering, and guest ordering, interpreted …

[PHYS]Physics [physics]PhysicsPhase transitionSpace group02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesMagnetic susceptibilityCrystallographysymbols.namesake0103 physical sciencessymbols[CHIM]Chemical SciencesMoleculeDensity functional theorySymmetry breaking010306 general physics0210 nano-technologyRaman spectroscopySingle crystalPhysical Review B
researchProduct

Innenrücktitelbild: First Step Towards a Devil's Staircase in Spin-Crossover Materials (Angew. Chem. 30/2016)

2016

Materials scienceCondensed matter physicsSpin crossover02 engineering and technologyGeneral Medicine010402 general chemistry021001 nanoscience & nanotechnology0210 nano-technology01 natural sciences0104 chemical sciencesAngewandte Chemie
researchProduct

Sequestering aromatic molecules with a spin-crossover Fe(II) microporous coordination polymer.

2012

All in a spin: A series of three-dimensional porous coordination polymer {Fe(dpe)[Pt(CN)(4)]}⋅G (dpe = 1,2-di(4-pyridyl)ethylene; G = phenazine, anthracene, or naphthalene) exhibiting spin crossover and host-guest functions is reported. The magnetic properties of the framework are very sensitive to the chemical nature (aromatic or hydroxilic solvents) and the size of the included guest molecules.

AnthraceneEthyleneMolecular StructureCoordination polymerPolymersOrganic ChemistryPhenazineInorganic chemistryMolecular ConformationGeneral ChemistryMicroporous materialCrystallography X-RayCatalysischemistry.chemical_compoundMagneticschemistrySpin crossoverPolymer chemistryMoleculeFerrous CompoundsNaphthaleneChemistry (Weinheim an der Bergstrasse, Germany)
researchProduct

Spin-crossover nanocrystals with magnetic, optical, and structural bistability near room temperature.

2008

ThermochromismNanostructureThermal hysteresisCondensed matter physicsNanocrystalBistabilitySpin crossoverMicroemulsionGeneral ChemistryGeneral MedicineMolecular materialsPhotochemistryCatalysisAngewandte Chemie (International ed. in English)
researchProduct

Synthesis, Crystal Structure and Magnetic Properties of [Fe(bpe)4(H2O)2](TCNQ)2 (bpe = trans-1,2-bis(4-pyridyl)ethane and TCNQ = tetracyanoquinodimet…

2005

The synthesis, structure and magnetic properties of [Fe(bpe)4(H2O)2](TCNQ)2 (1) are reported. 1 crystallizes in the triclinic P space group, a = 13.481(5), b = 14.887(3), c = 16.663(4) A, α = 101.048(18), β = 112.84(2), γ = 90.92(2)°, V = 3009.6(14) A3, Z = 2. The iron atom defines a compressed octahedron with the equatorial positions occupied by the bpe molecules which act as monodentate ligands and the two axial positions occupied by water molecules. The TCNQ− radical counterions are uncoordinated and interact by pairs defining (TCNQ)22− units strongly coupled antiferromagnetically. The iron(II) atoms are in the high spin state and its magnetic behaviour indicates the occurrence of zero-f…

chemistry.chemical_classificationDenticityChemistryStereochemistryCrystal structureTriclinic crystal systemTetracyanoquinodimethaneCoordination complexInorganic Chemistrychemistry.chemical_compoundCrystallographyOctahedronMoleculeGround stateZeitschrift für anorganische und allgemeine Chemie
researchProduct

Designing binuclear transition metal complexes: a new example of the versatility of N,N′-bis(2-aminobenzyl)-4,13-diaza-18-crown-6

2005

[Abstract] N,N′-Bis(2-aminobenzyl)-4,13-diaza-18-crown-6 (L) is a versatile receptor able to adapt to the coordinative preferences of different metal cation guests. With first-row transition metal ions, L tends to form binuclear complexes but, depending on the nature of the particular metal ion, the structure of the binuclear complex may be very different. Herein we report a study of the structure and magnetic properties of the corresponding nickel(II) and cobalt(II) complexes. The X-ray crystal structure of the nickel complex (1), with formula [Ni2(L)(CH3CN)4](ClO4)4·CH3CN, shows that this compound presents a symmetric coordination environment with L adopting an anti arrangement. Each Ni(I…

Models MolecularMetal ions in aqueous solutionCoordination numberchemistry.chemical_elementCrystal structureCrystallography X-RayInorganic Chemistrychemistry.chemical_compoundMagneticsMacrocyclic ligandsTransition metalNickelCationsCrown EthersOrganometallic CompoundsCrown ethersAza Compounds18-Crown-6TemperatureBinuclear complexesCobaltCrystallographyNickelchemistryOctahedronCrystal structuresTransition-metal complexesCobalt
researchProduct

Novel Iron(II) Microporous Spin-Crossover Coordination Polymers with Enhanced Pore Size

2012

In this Communication, we report the synthesis and characterization of novel Hofmann-like spin-crossover porous coordination polymers of composition {Fe(L)[M(CN)4]}·G [L = 1,4-bis(4-pyridylethynyl)- benzene and MII = Ni, Pd, and Pt]. The spin-crossover properties of the framework are closely related to the number and nature of the guest molecules included in the pores.

Pore sizeModels MolecularPolymersSurface PropertiesInorganic chemistryConductivityInorganic ChemistryCrystalchemistry.chemical_compoundSpin crossoverMemory devicesCrystalMoleculeFerrous CompoundsPhysical and Theoretical ChemistryParticle SizeBenzenechemistry.chemical_classificationConductivityTemperatureMicroporous materialPolymerCrystallographychemistryFISICA APLICADATransitionPorosityFramework material
researchProduct

Clathration effects on the interpenetration in the 2D (4,4) coordination polymer {[Fe(4,4 ′ -bipy)(dca) 2 ] · bt}

2004

Abstract A novel 2D polymer, {[Fe(4,4′-bipy)(dca)2] · bt}, (dca=dicyanamide, 4,4′-bipy=4,4′-bipyridine and bt=2,2′-bithiazoline) has been synthesized and characterized by X-ray crystallography. The structure reveals the formation of 2D (4,4) networks and intercalated bt uncoordinated ligands.

Inorganic Chemistrychemistry.chemical_classificationchemistry.chemical_compoundCrystallographychemistryCoordination polymerSelf assemblingMaterials ChemistryPolymerCrystal structurePhysical and Theoretical ChemistryDicyanamideInorganic Chemistry Communications
researchProduct

Inside Front Cover: A Combined Top-Down/Bottom-Up Approach for the Nanoscale Patterning of Spin-Crossover Coordination Polymers (Adv. Mater. 16/2007)

2007

The background scanning electron microscopy image shows nanometric patterns of the 3D spin crossover coordination polymer Fe(pyrazine)[Pt(CN)4] (see schematic structure in the circle), which have been fabricated using a combination of lift-off and multilayer sequential assembly methods. These patterns, reported by Gabor Molnar, Azzedine Bousseksou, and co-workers on p. 2163, exhibit a bistability of their electronic states (1A1 ⇌ 5T2), and thus represent a novel platform for a wide array of potential applications.

chemistry.chemical_classificationMaterials scienceBistabilitybusiness.industryCoordination polymerScanning electron microscopeMechanical EngineeringSchematicNanotechnologyPolymerchemistry.chemical_compoundchemistryMechanics of MaterialsSpin crossoverOptoelectronicsGeneral Materials ScienceThin filmbusinessNanoscopic scaleAdvanced Materials
researchProduct

A thermal- and light-induced switchable one-dimensional rare loop-like spin crossover coordination polymer

2019

Rare loop-like isostructural one-dimensional coordination polymer (1D-CP) systems formulated as {Fe(DPIP)2(NCSe)2}n·4DMF (1) and {Fe(DPIP)2(NCSe)2}n·4DMF (2) were obtained by self-assembling FeII and pseudohalide NCX−(X = S, Se) ions in presence of the V-shaped bidentate bridging ligand, namely, N,N′-dipyridin-4-ylisophthalamide (DPIP), and were characterized by elemental analysis, IR spectroscopy, TGA, single crystal X-ray diffraction and powder X-ray diffraction. The magnetic studies show that complex 2 undergoes a complete thermally induced spin crossover (SCO) behavior centered at T1/2 = 120 K with ca. 5 K thermal hysteresis loop and light-induced excited spin state trapping effect (LIE…

Ligand field theoryMaterials scienceSpin states010405 organic chemistryHydrogen bondCoordination polymerBridging ligand010402 general chemistry01 natural sciencesLIESST0104 chemical sciencesInorganic ChemistryCrystallographychemistry.chemical_compoundchemistrySpin crossoverIntramolecular forceDalton Transactions
researchProduct

[(Pyridylcarbonyl)pyridyl]triazolopyridines, Useful Ligands for the Construction of Polynuclear Coordination Compounds – Synthesis, Crystal Structure…

2007

A new tetranuclear cubane Cu4O4 complex has been synthesised from assembly of CuII ions and the polydentate ligand (pyridin-2-yl){6-([1,2,3]triazolo[1,5-a]pyridin-3-yl)pyridin-2-yl}methanone. Crystallographic analysis indicates that the Cu4O4 unit has an S4 symmetry. The magnetic properties have been analysed using the H = –2Σi,jJijSiSj spin Hamiltonian. Two distinct coupling constants, 2J1,3 = –37.4 cm–1 and 2J1,2 = –2.6 cm–1, obtained from the fitting of the experimental data have been rationalised on the basis of a density functional study of magnetostructural correlations in cubane complexes containing the Cu4O4 core. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2007)

Coupling constantchemistry.chemical_classificationDenticityLigandStereochemistrychemistry.chemical_elementCrystal structureCopperIonCoordination complexInorganic ChemistryCrystallographychemistry.chemical_compoundchemistryCubaneEuropean Journal of Inorganic Chemistry
researchProduct

Thermal-, pressure- and light-induced spin-crossover behviour in the two-dimensional Hofman-like coordination polymer [Fe(3-Clpy)2Pd(CN)4]

2013

The thermal spin-crossover behaviour, photoexcitation and subsequent relaxation, as well as the pressure-induced spincrossover behaviour at 298 K are discussed for the non-porous two-dimensional Hofmann-like coordination polymer [Fe(3-Clpy)(2)Pd(CN)(4)] (1). The title compound undergoes a two-step, cooperative thermal-induced SCO with critical temperatures T-c1(down arrow) = 159.6 K and T-c1(up arrow) = 164.5 K for the first step and T-c2(down arrow) = 141.4 K and T-c2(up arrow) = 148.4 K for the second step. Irradiation of the low-spin state with green light (514 nm) at 10 K induced the photoexcitation of around 60% of the iron(II) centres to the high-spin state (LIESST effect). The subseq…

Coordination polymerIronEnthalpyCooperativity02 engineering and technology010402 general chemistryPhotochemistry01 natural sciencesLIESSTAbsorptionInorganic Chemistrychemistry.chemical_compoundSpin crossoverRelaxation (NMR)[CHIM.MATE]Chemical Sciences/Material chemistry021001 nanoscience & nanotechnologyPhotomagnetismSpin crossover0104 chemical sciencesPhotoexcitationCoordination polymersCrystallographychemistryFISICA APLICADA0210 nano-technologyPhotomagnetism
researchProduct

Structural and Magnetic Characterization of a Novel Heptanuclear Hydroxo-Bridged Copper(II) Cluster of the Corner-Sharing Dicubane Type

1994

CrystallographychemistryStereochemistryX-ray crystallographyCluster (physics)chemistry.chemical_elementMoleculeGeneral MedicineGeneral ChemistryCrystal structureCopperCatalysisCharacterization (materials science)Angewandte Chemie International Edition in English
researchProduct

Precise Control and Consecutive Modulation of Spin Transition Temperature Using Chemical Migration in Porous Coordination Polymers

2011

Precise control of spin transition temperature (T(c)) is one of the most important challenges in molecular magnetism. A Hofmann-type porous coordination polymer {Fe(pz)[Pt(II)(CN)(4)]} (1; pz = pyrazine) exhibited cooperative spin transition near room temperature (T(c)(up) = 304 K and T(c)(down) = 284 K) and its iodine adduct {Fe(pz)[Pt(II/IV)(CN)(4)(I)]} (1-I), prepared by oxidative addition of iodine to the open metal sites of Pt(II), raised the T(c) by 100 K. DSC and microscopic Raman spectra of a solid mixture of 1-I and 1 revealed that iodine migrated from 1-I to 1 through the grain boundary after heating above 398 K. We have succeeded in precisely controlling the iodine content of {Fe…

PyrazineMagnetismCoordination polymerInorganic chemistrySpin transitionGeneral ChemistryBiochemistryOxidative additionCatalysisAdductMetalsymbols.namesakechemistry.chemical_compoundCrystallographyColloid and Surface Chemistrychemistryvisual_artsymbolsvisual_art.visual_art_mediumRaman spectroscopyJournal of the American Chemical Society
researchProduct

Guest Induced Strong Cooperative One- and Two-Step Spin Transitions in Highly Porous Iron(II) Hofmann-Type Metal-Organic Frameworks.

2017

[EN] The synthesis, crystal structure, magnetic, calorimetric, and Mo¿ ssbauer studies of a series of new Hofmann-type spin crossover (SCO) metal¿organic frameworks (MOFs) is reported. The new SCO-MOFs arise from self-assembly of FeII, bis(4-pyridyl)butadiyne (bpb), and [Ag(CN)2] ¿ or [MII(CN)4] 2¿ (MII = Ni, Pd). Interpenetration of four identical 3D networks with ¿-Po topology are obtained for {Fe(bpb)[AgI (CN)2]2} due to the length of the rod-like bismonodentate bpb and [Ag(CN)2] ¿ ligands. The four networks are tightly packed and organized in two subsets orthogonally interpenetrated, while the networks in each subset display parallel interpenetration. This nonporous material undergoes a…

Hofmann-type coordination polymers010405 organic chemistryStereochemistryCrystal structure010402 general chemistry01 natural sciences0104 chemical sciencesInorganic ChemistryNitrobenzenechemistry.chemical_compoundCrystallographychemistrySpin crossoverFISICA APLICADAHighly porousMössbauer spectroscopyMoleculePhysical and Theoretical ChemistrySpin (physics)Porous mediumta116Inorganic chemistry
researchProduct

Chiral and Racemic Spin Crossover Polymorphs in a Family of Mononuclear Iron(II) Compounds

2017

[EN] Understanding the origin of cooperativity and the equilibrium temperature of transition (T1/2) displayed by the spin-crossover (SCO) compounds as well as controlling these parameters are of paramount importance for future applications. For this task, the occurrence of polymorphism, presented by a number of SCO complexes, may provide deep insight into the influence of the supramolecular organization on the SCO behavior. In this context, herein we present a novel family of mononuclear octahedral FeII complexes with formula cis- [Fe(bqen)(NCX)2], where bqen is the chelating tetradentate ligand N,N¿-bis(8-quinolyl)ethane-1,2-diamine and X = S, Se. Depending on the preparation method, these…

010405 organic chemistryChemistryStereochemistrySupramolecular chemistryCooperativity010402 general chemistry01 natural sciences0104 chemical sciencesInorganic ChemistryCrystallographyOctahedronPolymorphism (materials science)Spin crossoverFISICA APLICADARacemic mixtureOrthorhombic crystal systemPhysical and Theoretical ChemistryEnantiomerInorganic Chemistry
researchProduct

Pressure and Thermally Induced Spin Crossover in a 2D Iron(II) Coordination Polymer {Fe[bipy(ttr)2]}n

2021

Using magnetic measurements and UV -visible spectroscopy we have studied the pressure influence on the spin crossover (SCO) properties of the 2D Fe (II) coordination polymer formulated {Fe[bipy(ttr) 2 ]} n . At variable temperature and fixed pressure, we have measured the magnetic property of this compound. Under different pressures and at room temperature, the visible spectroscopy has been observed. The magnetic experiment displays a two-step spin crossover behavior under pressure. The visible spectroscopic measurements at room temperature show a spin crossover with an asymmetric hysteresis at 0.4GPa.

Magnetic measurementsMaterials scienceCoordination polymerAnalytical chemistry02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical scienceschemistry.chemical_compoundHysteresisUltraviolet visible spectroscopychemistrySpin crossover0210 nano-technology2021 5th IEEE Electron Devices Technology & Manufacturing Conference (EDTM)
researchProduct

Enhanced Interplay between Host–Guest and Spin-Crossover Properties through the Introduction of an N Heteroatom in 2D Hofmann Clathrates

2021

Controlled modulation of the spin-crossover (SCO) behavior through the sorption-desorption of invited molecules is an extensively exploited topic because of its potential applications in molecular sensing. For this purpose, understanding the mechanisms by which the spin-switching properties are altered by guest molecules is of paramount importance. Here, we show an experimental approach revealing a direct probe of how the interplay between SCO and host-guest chemistry is noticeably activated by chemically tuning the host structure. Thus, the axial ligand 4-phenylpyridine (4-PhPy) in the 2D Hofmann clathrates {Fe(4-PhPy)2[M(CN)4]} (PhPyM; M = Pt, Pd) is replaced by 2,4-bipyridine (2,4-Bipy),…

010405 organic chemistryLigandHeteroatomSubstituent010402 general chemistry01 natural sciences0104 chemical sciencesInorganic Chemistrychemistry.chemical_compoundCrystallographyAdsorptionchemistrySpin crossoverMoleculeMethanolPhysical and Theoretical ChemistryChemical compositionInorganic Chemistry
researchProduct

A wide family of pyridoxal thiosemicarbazone ferric complexes: Syntheses, structures and magnetic properties

2009

Abstract This study reports the syntheses and the characterization of 12 ferric complexes of pyridoxal thiosemicarbazone. The richness of the coordination chemistry of this ligand is highlighted by the modulation of its charge from neutral H 2 L to anionic L 2− , thus leading to a wide family of ferric compounds with charge varying from +3 to −1. The structures of complexes [Fe(HL) 2 ]ClO 4  · 2H 2 O and [Fe(HL)L] · 4.5H 2 O were solved and discussed with a particular attention brought to the intermolecular interactions occurring between the complexes. The investigation of magnetic properties of these compounds revealed that two of them are in the HS state at any temperature, whereas the ot…

chemistry.chemical_classificationFerric CompoundsLigandStereochemistryIntermolecular forceCoordination complexPyridoxal thiosemicarbazoneInorganic ChemistryCrystallographychemistryMaterials ChemistrymedicineFerricPhysical and Theoretical ChemistryElectronic propertiesmedicine.drugInorganica Chimica Acta
researchProduct

Inside Back Cover: First Step Towards a Devil's Staircase in Spin-Crossover Materials (Angew. Chem. Int. Ed. 30/2016)

2016

International audience; Periodic and aperiodic spin-state concentration waves form during “Devil's staircase”-type spin-crossover in a new bimetallic 2D coordination polymer {Fe[(Hg(SCN)3)2](4,4′-bipy)2}n. In their Communication on page 8675 ff., J. A. Real, E. Collet et al. describe the appearance of spin-state concentration waves between long-range spatially ordered structures of low- and high-spin states during multistep spin-crossover.

[PHYS]Physics [physics]Phase transitionCondensed matter physics010405 organic chemistryChemistryCoordination polymerNanotechnologyGeneral Chemistry010402 general chemistry01 natural sciencesCatalysis0104 chemical scienceschemistry.chemical_compoundAperiodic graphSpin crossoverCondensed Matter::Strongly Correlated ElectronsCover (algebra)Bimetallic strip
researchProduct

A Singular Noninterpenetrating Coordination Polymer with the Pt3O4 Structure Containing Naked [Na+]4 Units

2006

The homoleptic low-spin complex [Fe(L)3]2+ where L is the bisbidentate ligand 1,10-phenanthroline-5,6-dione, coordinates Na+ ions via exo-oriented dione groups defining a three-dimensional cationic network {[Fe(L)3]4Na3}11+}n with Pt3O4 topology. The large volume generated by the network is filled with 11 perchlorate ions, 7 "NaClO4" ionic pairs, and 9 H2O molecules. Singular [Na+]4 units, in which the Na+ ions are practically uncoordinated, are formed.

LigandCoordination polymerInorganic chemistryCationic polymerizationIonic bondingIonInorganic Chemistrychemistry.chemical_compoundCrystallographyPerchloratechemistryMoleculePhysical and Theoretical ChemistryHomolepticInorganic Chemistry
researchProduct

Electronic Structure Modulation in an Exceptionally Stable Non-Heme Nitrosyl Iron(II) Spin-Crossover Complex

2016

The highly stable nitrosyl iron(II) mononuclear complex [Fe(bztpen)(NO)](PF6)(2) (bztpen=N-benzyl-N,N',N'-tris(2-pyridylmethyl)ethylenediamine) displays an S=1/2 S=3/2 spin crossover (SCO) behavior (T-1/2=370 K, Delta H= 12.48 kJmol(-1), Delta S=33 JK(-1) mol(-1)) stemming from strong magnetic coupling between the NO radical (S=1/2) and thermally interconverted (S=0 S=2) ferrous spin states. The crystal structure of this robust complex has been investigated in the temperature range 120-420 K affording a detailed picture of how the electronic distribution of the t(2g)-e(g) orbitals modulates the structure of the {FeNO}(7) bond, providing valuable magneto-structural and spectroscopic correlat…

Spin statesIronInorganic chemistryAntiferromagnetic couplingEthylenediamineCrystal structureElectronic structure010402 general chemistry01 natural sciencesCatalysisFerrouschemistry.chemical_compoundAtomic orbitalSpin crossover[CHIM.COOR]Chemical Sciences/Coordination chemistryMolecular structures010405 organic chemistryEstructura molecularOrganic ChemistryNitric oxideGeneral ChemistryAtmospheric temperature rangeSpin crossoverÒxid nítric0104 chemical sciences3. Good healthCrystallographychemistryFISICA APLICADANitrosyl complexesMolecular structureFerroChemistry - A European Journal
researchProduct

Selective Photoswitching of the Binuclear Spin Crossover Compound{[Fe(bt)(NCS)2]2(bpm)}into Two Distinct Macroscopic Phases

2005

The low-spin (LS-LS, $S=0$) diamagnetic form of the binuclear spin crossover complex ${[\mathrm{Fe}(\mathrm{bt})(\mathrm{NCS}{)}_{2}{]}_{2}(\mathrm{bpm})}$ was selectively photoconverted into two distinct macroscopic phases at different excitation wavelengths (1342 or 647.1 nm). These long-lived metastable phases have been identified, respectively, as the symmetry-broken paramagnetic form (HS-LS, $\mathrm{S}=2$) and the antiferromagnetically coupled (HS-HS, $S=0$) high-spin form of the compound. The selectivity may be explained by the strong coupling of the primary excited states to the paramagnetic state.

CrystallographyParamagnetismMaterials scienceCondensed matter physicsSpin crossoverMetastabilityExcited stateStrong couplingGeneral Physics and AstronomyDiamagnetismCondensed Matter::Strongly Correlated ElectronsSelectivityExcitationPhysical Review Letters
researchProduct

Fast detection of water and organic molecules by a change of color in an iron(II) microporous spin-crossover coordination polymer.

2012

Here we present a novel three-dimensional iron(II) spin-crossover porous coordination polymer based on the bis(1,2,4-triazol-4-yl)adamantane (tr(2)ad) ligand and the [Au(CN)(2)](-) metalloligand anions with the formula {Fe(3)(tr(2)ad)(4)[Au(CN)(2))](2)}[Au(CN)(2)](4)·G. The sorption/desorption of guest molecules, water, and five/six-membered-ring organic molecules is easily detectable because the guest-free and -loaded frameworks present drastically distinct coloration and spin-state configurations.

Coordination polymerLigandAdamantaneInorganic chemistrySorptionMicroporous materialInorganic Chemistrychemistry.chemical_compoundCrystallographychemistrySpin crossoverDesorptionMoleculePhysical and Theoretical ChemistryInorganic chemistry
researchProduct

A new N6 hexadentate ligand and a novel heptacoordinated N6O-type Fe(III) compounds: Synthesis, characterization and structure of [Fe(dimpyen)(OH)](A…

2011

Abstract In this contribution, we report the syntheses of a novel N6 donor set ligand, dimpyen = N1,N2-di[(1-methyl-1H-2-imidazolyl) methyl]-N1,N2-di(2-pyridilmethyl)-1,2-ethanediamine. This type of ligand was designed to modulate the properties of the metal ions bound to it. The reaction with Fe(II) gives off a new heptacoordinated iron(III) complex. We study the spectroscopic (UV–Vis), magnetic and electrochemical behavior and also made the structural determination with X-ray diffraction at 134 K and a heptacoordinated N6O-type derivative of Fe(III) is reported as well. This complex crystallize as perchlorate or hexafluorophosphate and the formula of these derivatives are [Fe(dimpyen)(OH)…

LigandMetal ions in aqueous solutionInorganic chemistryCrystal structureElectrochemistryInorganic Chemistrychemistry.chemical_compoundPerchlorateCrystallographyPentagonal bipyramidal molecular geometrychemistryOctahedronHexafluorophosphateMaterials ChemistryPhysical and Theoretical ChemistryInorganica Chimica Acta
researchProduct

Spin crossover behavior in a series of iron(III) alkoxide complexes.

2015

The synthesis, crystal structures, magnetic behavior, and electron paramagnetic resonance studies of five new FeIII spin crossover (SCO) complexes are reported. The [FeIIIN5O] coordination core is constituted of the pentadentate ligand bztpen (N5) and a series of alkoxide anions (ethoxide, propoxide, n-butoxide, isobutoxide, and ethylene glycoxide). The methoxide derivative previously reported by us is also reinvestigated. The six complexes crystallize in the orthorhombic Pbca space group and show similar molecular structures and crystal packing. The coordination octahedron is strongly distorted in both the high- and low-temperature structures. The structural changes upon spin conversion ar…

FE(3-OET-SALAPA)2>(CLO4).SInorganic chemistryFERRIC COMPLEXESCrystal structureMethoxideLIGAND; SYSTEMMAGNETIC-SUSCEPTIBILITYlaw.inventionInorganic Chemistrychemistry.chemical_compoundlawSpin crossoverPhysical and Theoretical ChemistryElectron paramagnetic resonanceSchiff baseLigandIRONCrystallographySOLID-STATEchemistryFISICA APLICADAAlkoxideMOSSBAUEROrthorhombic crystal systemPHASE-TRANSITIONSLIGANDSYSTEMSOLVATEInorganic chemistry
researchProduct

Thermal and light induced polymorphism in iron(II) spin crossover compounds.

2004

The spin crossover complexes {Fe[H2B(pz)2]2L} ([H2B(pz)2]2 = dihydrobis(pyrazolyl)borate, L = 2,2'-bipyridine (1), bipy and 1,10-phenanthroline, phen (2)) undergo both thermal and light induced spin crossover, but the structure of the low spin and light induced high spin states for 2 are different from that of the thermally induced high spin state and from those of 1. Real Cabezos, Jose Antonio, Jose.A.Real@uv.es

Spin statesCondensed matter physicsUNESCO::QUÍMICA::Química inorgánicaChemistryUNESCO::QUÍMICAIronMetals and AlloysInduced Polymorphism ; Iron ; Spinchemistry.chemical_elementInduced PolymorphismGeneral Chemistry:QUÍMICA::Química inorgánica [UNESCO]:QUÍMICA [UNESCO]CatalysisSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsCrystallographySpinPolymorphism (materials science)Spin crossoverThermalMaterials ChemistryCeramics and CompositesLight inducedBoron
researchProduct

Enhanced porosity in a new 3D Hofmann-like network exhibiting humidity sensitive cooperative spin transitions at room temperature

2011

The porous coordination polymers (PCPs) of general formula {Fe(bpac)[M(CN)4]}·guest (M = Pt, Pd) exhibit larger channels than previously synthesised 3D-Hofmann-like PCP. The channels are partially occupied by uncoordinated guest bpac ligands and labile H2O molecules. These PCPs exhibit very scarce cooperative spin crossover behaviour around room temperature with a large hysteresis loop (up to 49 K) and also display sensitivity to humidity and guest molecules. The inclusion of bpac molecules in the 3D network can be avoided by adding competitive volatile molecules during the crystallization process, affording the guest-free material. The spin crossover behavior of different guest and guest-f…

ChemistryPorous Coordination PolymersHumidityNanotechnologyGeneral Chemistrylaw.inventionCrystallographylawSpin crossoverMaterials ChemistryMoleculeCrystallizationSpin (physics)PorosityJournal of Materials Chemistry
researchProduct

On the Nature of the Plateau in Two-Step Dinuclear Spin-Crossover Complexes

2004

A remarkable feature of the spin-crossover process in several dinuclear iron(II) compounds is a plateau in the two-step transition curve. Up to now, it has not been possible to analyse the spin state of dinuclear pairs that constitute such a plateau, due to the relative high temperatures at which the transition takes place in complexes investigated so far. We solved this problem by experimentally studying a novel dinuclear spin-crossover compound [[Fe(phdia)(NCS)(2)](2)(phdia)] (phdia: 4,7-phenanthroline-5,6-diamine). We report here on the synthesis and characterisation of this system, which exhibits a two-step spin transition at T(c1)=108 K and T(c2)=80 K, displaying 2 K and 7 K wide therm…

QuenchingSpin statesChemistryOrganic ChemistrySpin transitionGeneral ChemistryPlateau (mathematics)CatalysisCrystallographyNuclear magnetic resonanceSpin crossoverMetastabilityMössbauer spectroscopySpin-½
researchProduct

Bidirectional photo-switching of the spin state of iron(II) ions in a triazol based spin crossover complex within the thermal hysteresis loop

2009

Abstract We have investigated the effect of short laser pulses (532 nm, 4 ns, −2 ) on the spin state of iron(II) ions in the spin crossover compound {[Fe II (Htrz) 2 (trz)](BF 4 )} within the hysteresis region of the high-spin (HS) to low-spin (LS) first-order thermal phase transition. Using Raman spectroscopy we have evidenced quasi-complete HS → LS as well as LS → HS photo-conversions, which can be induced by a single laser shot in the descending (351 K) and ascending (378 K) branches of the hysteresis loop, respectively. No effect has been observed, however, close to the center of the hysteresis loop even for repeated exposures.

Phase transitionCondensed matter physicsSpin statesChemistryGeneral Physics and AstronomyLaserMolecular physicslaw.inventionIonLoop (topology)symbols.namesakeHysteresislawSpin crossoversymbolsPhysical and Theoretical ChemistryRaman spectroscopyChemical Physics Letters
researchProduct

Reversible Chemisorption of Sulfur Dioxide in a Spin Crossover Porous Coordination Polymer

2013

The chemisorption of sulfur dioxide (SO2) on the Hofmann-like spin crossover porous coordination polymer (SCO-PCP) {Fe(pz)[Pt(CN)4]} has been investigated at room temperature. Thermal analysis and adsorption-desorption isotherms showed that ca. 1 mol of SO2 per mol of {Fe(pz)[Pt(CN)4]} was retained in the pores. Nevertheless, the SO2 was loosely attached to the walls of the host network and completely released in 24 h at 298 K. Single crystals of {Fe(pz)[Pt(CN)4]}·nSO2 (n ≈ 0.25) were grown in water solutions saturated with SO2, and its crystal structure was analyzed at 120 K. The SO2 molecule is coordinated to the Pt(II) ion through the sulfur atom ion, Pt-S = 2.585(4) Å. This coordination…

Molecular StructureCoordination polymerInorganic chemistrySpin transitionCrystal structureCrystallography X-RayIonInorganic Chemistrychemistry.chemical_compoundCrystallographychemistryChemisorptionSpin crossoverX-ray crystallographySulfur DioxideMoleculeAdsorptionFerrous CompoundsPhysical and Theoretical ChemistryInorganic Chemistry
researchProduct

Hysteresis and change of transition temperature in thin films of Fe{[Me2Pyrz]3BH}2, a new sublimable spin-crossover molecule.

2015

Thin films of the spin-crossover (SCO) molecule Fe{[Me(2)Pyrz](3)BH}(2) (Fe-pyrz) were sublimed on Si/SiO2 and quartz substrates, and their properties investigated by X-ray absorption and photo-emission spectroscopies, optical absorption, atomic force microscopy, and superconducting quantum interference device. Contrary to the previously studied Fe(phen)(2)(NCS)(2), the films are not smooth but granular. The thin films qualitatively retain the typical SCO properties of the powder sample (SCO, thermal hysteresis, soft X-ray induced excited spin-state trapping, and light induced excited spin-state trapping) but present intriguing variations even in micrometer-thick films: the transition tempe…

Materials scienceCondensed matter physicsBand gapTransition temperatureAucunSpin transitionAnalytical chemistryGeneral Physics and AstronomyAtmospheric temperature rangeSurface energyCondensed Matter::Materials ScienceSpin crossoverCondensed Matter::SuperconductivityExcited statePhysical and Theoretical ChemistryThin filmThe Journal of chemical physics
researchProduct

Pressure Tunable Electronic Bistability in Fe(II) Hofmann-like Two-Dimensional Coordination Polymer [Fe(Fpz)2Pt(CN)4]: A Comprehensive Experimental a…

2021

A comprehensive experimental and theoretical study of both thermal-induced spin transition (TIST) as a function of pressure and pressure-induced spin transition (PIST) at room temperature for the two-dimensional Hofmann-like SCO polymer [Fe(Fpz)2Pt(CN)4] is reported. The TIST studies at different fixed pressures have been carried out by magnetic susceptibility measurements, while PIST studies have been performed by means of powder X-ray diffraction, Raman, and visible spectroscopies. A combination of the theory of elastic interactions and numerical Monte Carlo simulations has been used for the analysis of the cooperative interactions in TIST and PIST studies. A complete (T, P) phase diagram…

Phase transitionCondensed matter physicsPhononChemistrySpin transitionMagnetic susceptibilityInorganic Chemistrysymbols.namesakeHysteresisMetastabilitysymbolsPhysical and Theoretical ChemistryRaman spectroscopyPhase diagramInorganic Chemistry
researchProduct

High quality nano-patterned thin films of the coordination compound {Fe(pyrazine)[Pt(CN)4]} deposited layer-by-layer

2011

International audience; An optimised procedure was developed for the layer-by-layer deposition of the Hofmann clathrate-like coordination compound {Fe(pyrazine)[Pt(CN)4]} either as continuous or as nano-patterned thin films. Characterization of the thickness and topography of the thin films by atomic force microscopy (AFM) and by surface plasmon resonance (SPR) spectroscopy, which also yields the layer's refractive index and losses, are reported. We found that the films are of good optical quality and the results of both AFM and SPR experiments are in good agreement with the theoretical predictions of the films thicknesses.

Pyrazine010405 organic chemistryChemistryLayer by layerAnalytical chemistryGeneral Chemistry010402 general chemistry01 natural sciencesCatalysis0104 chemical scienceschemistry.chemical_compoundNano-Materials ChemistryThin filmSurface plasmon resonance[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsSpectroscopyRefractive indexLayer (electronics)
researchProduct

Reversible guest-induced gate-opening with multiplex spin crossover responses in two-dimensional Hofmann clathrates.

2021

Spin crossover (SCO) compounds are very attractive types of switchable materials due to their potential applications in memory devices, actuators or chemical sensors. Rational chemical tailoring of these switchable compounds is key for achieving new functionalities in synergy with the spin state change. However, the lack of precise structural information required to understand the chemical principles that control the SCO response with external stimuli may eventually hinder further development of spin switching-based applications. In this work, the functionalization with an amine group in the two-dimensional (2D) SCO compound {Fe(5-NH2Pym)2[MII(CN)4]} (1M, 5-NH2Pym = 5-aminopyrimidine, MII =…

Materials scienceSpin states010405 organic chemistryKineticsGeneral Chemistry010402 general chemistry01 natural sciences3. Good health0104 chemical sciencesChemistryChemical physicsSpin crossoverDesorptionSurface modificationMoleculeSpin (physics)Single crystalChemical science
researchProduct

[Fe(TPT)(2/3){M(I)(CN)2}2]⋅nSolv (M(I) = Ag, Au): new bimetallic porous coordination polymers with spin-crossover properties.

2013

Two new heterobimetallic porous coordination polymers with the formula [Fe(TPT)2/3{MI(CN)2}2]¿nSolv (TPT=[(2,4,6-tris(4-pyridyl)-1,3,5-triazine]; MI=Ag (nSolv=0, 1¿MeOH, 2¿CH2Cl2), Au (nSolv=0, 2¿CH2Cl2)) have been synthesized and their crystal structures were determined at 120¿K and 293¿K by single-crystal X-ray analysis. These structures crystallized in the trigonal R-3m space group. The FeII ion resides at an inversion centre that defines a [FeN6] coordination core. Four dicyanometallate groups coordinate at the equatorial positions, whilst the axial positions are occupied by the TPT ligand. Each TPT ligand is centred in a ternary axis and bridges three crystallographically equivalent Fe…

StereochemistryIronCrystal structure010402 general chemistry01 natural sciencesCatalysismol structure spin crossover pyridyltriazine iron silver gold cyanideIonSpin crossoverMössbauer spectroscopyMolecule[CHIM.COOR]Chemical Sciences/Coordination chemistryBimetallic strippyridyltriazine iron silver gold cyanide prepn crystal structure010405 organic chemistryChemistryOrganic ChemistryGeneral ChemistrySelf-assemblySpin crossover0104 chemical sciencesCoordination polymersCrystallographyFISICA APLICADATernary operationPorositysilver gold bimetallic porous iron pyridyltriazine polymer spin crossoverNatural bond orbitalChemistry (Weinheim an der Bergstrasse, Germany)
researchProduct

Titelbild: One Shot Laser Pulse Induced Reversible Spin Transition in the Spin-Crossover Complex [Fe(C4H4N2){Pt(CN)4}] at Room Temperature (Angew. Ch…

2005

One shotNuclear magnetic resonanceChemistrySpin crossoverlawSpin transitionGeneral MedicineAtomic physicsLaserPulse (physics)law.inventionAngewandte Chemie
researchProduct

Formation of local spin-state concentration waves during the relaxation from photoinduced state in a spin-crossover polymer

2017

The complex relaxation from the photoinduced high-spin phase (PIHS) to the low-spin phase of the bimetallic two-dimensional coordination spin-crossover polymer [Fe[(Hg(SCN)3)2](4,4′-bipy)2]nis reported. During the thermal relaxation, commensurate and incommensurate spin-state concentration waves (SSCWs) form. However, contrary to the steps forming at thermal equilibrium, associated with long-range SSCW order, the SSCWs forming during the relaxation from the PIHS phase correspond to short-range order, revealed by diffuse X-ray scattering. This is interpreted as resulting from the competition between the two types of SSCW order and another structural symmetry breaking, due to ligand ordering,…

Phase transitionSymmetry breaking 2Spin states02 engineering and technology010402 general chemistry01 natural sciencesSpin crossoverPhase (matter)Materials ChemistryOrganic chemistrySymmetry breakingPhase transitionThermal equilibriumAperiodicityChemistryScatteringMetals and Alloys021001 nanoscience & nanotechnologyAtomic and Molecular Physics and OpticsPhoto-crystallography0104 chemical sciencesElectronic Optical and Magnetic Materials[CHIM.POLY]Chemical Sciences/PolymersChemical physics[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]Relaxation (physics)Condensed Matter::Strongly Correlated Electrons0210 nano-technology
researchProduct

Correction: Effect of nanostructuration on the spin crossover transition in crystalline ultrathin films

2019

Correction for ‘Effect of nanostructuration on the spin crossover transition in crystalline ultrathin films’ by Víctor Rubio-Giménez et al., Chem. Sci., 2019, DOI: 10.1039/c8sc04935a.

Materials scienceCondensed matter physicsSpin crossoverGeneral ChemistryChemical Science
researchProduct

Polycatenane systems from Co(II) and trans-1,2-bis(4-pyridyl)ethene (bpe). Synthesis and structure of Co(bpe)2(NCS)2·CH3OH, [Co(bpe)2(H2O)2](ClO4)2·2…

2001

Three new compounds of formulae Co(bpe)2(NCS)2·CH3OH, 1, [Co(bpe)2(H2O)2](ClO4)2·2CH3OH, 2 and [Co(bpe)2(H2O)2(CH3OH)2](ClO4)2·bpe·H2O, 3, [bpe =  trans-1,2-bis(4-pyridyl)ethene] have been synthesised and characterised by single crystal X-ray diffraction. The metal environment in 1–3 is distorted octahedral. Compound 1 is a polycatenane. Its structure consists of parallel layers containing Co2+ ions linked by bpe ligands, the Co···Co distance through the bpe bridge being 13.65(3) A. Each metal ion, in a layer, defines the edges of a rhombus. Two thiocyanate groups trans-coordinated to the metal atoms are perpendicular to the sheets. Each sheet has an infinite number of perpendicular sheets …

ThiocyanateChemistryHydrogen bondStereochemistryGeneral ChemistryCatalysisMetalchemistry.chemical_compoundPerchlorateCrystallographyOctahedronPolycatenanevisual_artMaterials Chemistryvisual_art.visual_art_mediumMoleculeSingle crystalNew Journal of Chemistry
researchProduct

Enhancement of guest-responsivity by mesocrystallization of porous coordination polymers

2017

Mesocrystals of a porous coordination polymer {Fe(pz)[Pt(CN)4]} (1) showing spin transition were prepared by the reverse micelle method, and the size-controlled mesocrystal 1 kept its porous property and magnetic bistability and exhibited higher guest-responsivity with switching the spin state in both solid and aqueous suspension states than the bulk 1.

Materials scienceSpin states010405 organic chemistryCoordination polymerInorganic chemistryPorous Coordination PolymersSpin transitionGeneral Chemistry010402 general chemistry01 natural sciencesMicelle0104 chemical scienceschemistry.chemical_compoundResponsivitychemistryChemical engineeringMaterials ChemistryMesocrystalPorosityJournal of Materials Chemistry C
researchProduct

An unprecedented hetero-bimetallic three-dimensional spin crossover coordination polymer based on the tetrahedral [Hg(SeCN)4]2− building block

2019

[EN] Self-assembly of octahedral FeII ions, trans-1,2-bis(4-pyridyl) ethane (bpe) bridging ligands and [Hg(XCN)(4)](2-) (X = S (1), Se (2)) tetrahedral building blocks has afforded a new type of hetero-bimetallic Hg-II-Fe-II spin-crossover (SCO) 3D 6,4-connected coordination polymer (CP) formulated {Fe(bpe)[Hg(XCN)(4)]}(n). For X = S (1), the ligand field is close to the crossing point but 1 remains paramagnetic over all temperatures. In contrast, for X = Se (2) the complex undergoes complete thermal induced SCO behaviour centred at T-1/2 = 107.8 K and complete photoconversion of the low spin state into a metastable high-spin state (LIESST effect) with T-LIESST = 66.7 K. The current results…

Ligand field theoryMaterials scienceSpin statesCoordination polymerCrystal structureMagnetic-Properties010402 general chemistry01 natural sciencesCatalysisLIESSTParamagnetismchemistry.chemical_compoundSpin crossoverPressureMaterials ChemistrySpectroscopic investigationsPolynuclear complexesCrystal-StructureBehavior010405 organic chemistryMetals and AlloysGeneral Chemistry0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsCrystallographyOctahedronchemistryFISICA APLICADATransitionX-RayCeramics and CompositesHg(Scn)(4)(2-) UnitStateChemical Communications
researchProduct

Imparting hysteretic behavior to spin transition in neutral mononuclear complexes

2016

A series of spin transition neutral compounds [FeL(NCS)2] has been synthesized and characterized by means of magnetic susceptibility studies, X-ray diffraction, IR and Mossbauer spectroscopic, and calorimetric measurements (L = N,N-bis((3-alkoxypyridin-2-yl)methylene)-propane-1,3-diamine, number of carbon atoms in chains (n) = 4, 12, 14, 16, 18, 20). The shortest chain compound is crystalline and displays a gradual spin transition above ambient temperature. Growing the aliphatic substituent up to n = 12 and 14 leads to loss of crystalline order and deterioration of magnetic properties. At the critical chain length n = 16 and above, the compounds undergo a phase transition reflected by a spi…

Phase transition010405 organic chemistryStereochemistryGeneral Chemical EngineeringSubstituentSpin transitionGeneral Chemistry010402 general chemistry01 natural sciencesMagnetic susceptibility0104 chemical scienceschemistry.chemical_compoundHysteresisCrystallographychemistryPhase (matter)MethyleneSpin-½RSC Advances
researchProduct

Metamagnetic Behavior in [M (tvp) (NCS)2] Coordination Polymers (M = Fe(II) and Co(II); tvp = 1,2-di-(4-pyridyl)-ethylene)

1999

Abstract We report the synthesis and magnetic properties of two new coordination polymers of formula [M(tvp)(NCS)2] (M = Fe(II) and Co(II)). The magnetic data reveal the occurrence of metamagnetic behavior. Switching from bulk antiferromagnetic to ferromagnetic behavior occurs for magnetic fields greater than 1300 G (Fe(II)) and 450 G (Co(II)) at temperatures lower than 4 K. Both compounds are isomorphous. A molecular structure is suggested in the light of the magnetic properties and precedent data on related systems.

chemistry.chemical_classificationCoordination polymerStereochemistryPolymerComputer Science::Computational GeometryCondensed Matter PhysicsMagnetic susceptibilityMagnetic fieldCrystallographychemistry.chemical_compoundchemistryFerromagnetismMoleculeAntiferromagnetismCondensed Matter::Strongly Correlated ElectronsMetamagnetismMolecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals
researchProduct

Bistable Hofmann-Type FeII Spin-Crossover Two-Dimensional Polymers of 4-Alkyldisulfanylpyridine for Prospective Grafting of Monolayers on Metallic Su…

2021

Aiming at investigating the suitability of Hofmann-type two-dimensional (2D) coordination polymers {FeII(Lax)2[MII(CN)4]} to be processed as single monolayers and probed as spin crossover (SCO) junctions in spintronic devices, the synthesis and characterization of the MII derivatives (MII = Pd and Pt) with sulfur-rich axial ligands (Lax = 4-methyl- and 4-ethyl-disulfanylpyridine) have been conducted. The thermal dependence of the magnetic and calorimetric properties confirmed the occurrence of strong cooperative SCO behavior in the temperature interval of 100-225 K, featuring hysteresis loops 44 and 32.5 K/21 K wide for PtII-methyl and PtII/PdII-ethyl derivatives, while the PdII-methyl deri…

chemistry.chemical_classificationSpintronics010405 organic chemistryChemistrymedia_common.quotation_subjectFrustrationPolymer010402 general chemistry01 natural sciences0104 chemical sciencesInorganic ChemistryMetalHysteresisCrystallographySpin crossovervisual_artExcited stateMonolayervisual_art.visual_art_mediumPhysical and Theoretical Chemistrymedia_commonInorganic Chemistry
researchProduct

Supramolecular isomerism in spin crossover networks with aurophilic interactions

2004

Assembly of FeII, 3-cyanopyridine and [Au(CN)2]– affords, in one-pot reaction, three coordination polymers that represent a genuine example of supramolecular isomerism with strong influence in the spin crossover regime of the FeII ions. Real Cabezos, Jose Antonio, Jose.A.Real@uv.es

chemistry.chemical_classificationMaterials scienceSupramolecular isomerismPolymersAurophillic interactionsUNESCO::QUÍMICAUNESCO::QUÍMICA::Química analíticaMetals and AlloysSupramolecular chemistrySupramolecular isomerism; Networks ; Aurophillic interactions ; PolymersNanotechnologyGeneral ChemistryPolymer:QUÍMICA [UNESCO]CatalysisSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsIonCrystallographychemistrySpin crossover:QUÍMICA::Química analítica [UNESCO]Materials ChemistryCeramics and CompositesNetworks
researchProduct

Tunable Bistability in a Three-Dimensional Spin-Crossover Sensory- and Memory-Functional Material

2005

Materials scienceCondensed matter physicsBistabilityMechanics of MaterialsSpin crossoverMechanical EngineeringInorganic chemistryGeneral Materials ScienceSensory systemPiezoelectricityAdvanced Materials
researchProduct

Studies on metal-drug complexes. Crystal structure and characterization of μ-sulfato bromazepam copper(II) complex

1987

Abstract The compound Cu(Bromazepam) SO 4 having been synthesized, its crystal structure shows distorted octahedral environment for the Copper(II) ion. Because of the long Cu-O(4) length (2.90 A), we can consider that there is a semicoordinative interaction with the sulfate group acting as tridentate bridging ligand. The structure is a polymeric chain where dimeric units are linked by the oxygen (C-O(5)) atom of the Bromazepam carbonyl group. The drug consequently acts as a tridentate ligand in this compound. The magnetic results show a very weak antiferromagnetic interaction.

chemistry.chemical_classificationBromazepamChemistryStereochemistrychemistry.chemical_elementBridging ligandCrystal structureBiochemistryCopperInorganic ChemistryMetalCrystallographyOctahedronvisual_artmedicinevisual_art.visual_art_mediumMoleculeInorganic compoundmedicine.drugJournal of Inorganic Biochemistry
researchProduct

Discrimination between two memory channels by molecular alloying in a doubly bistable spin crossover material

2019

[EN] A multistable spin crossover (SCO) molecular alloy system [Fe1-xMx(nBu-im)(3)(tren)](P1-yAsyF6)(2) (M = Zn-II, Ni-II; (nBu-im)(3)(tren) = tris(n-butyl-imidazol(2-ethylamino))amine) has been synthesized and characterized. By controlling the composition of this isomorphous series, two cooperative thermally induced SCO events featuring distinct critical temperatures (T-c) and hysteresis widths (Delta T-c, memory) can be selected at will. The pristine derivative 100As (x = 0, y = 1) displays a strong cooperative two-step SCO and two reversible structural phase transitions (PTs). The low temperature PTLT and the SCO occur synchronously involving conformational changes of the ligand's n-buty…

Materials science010405 organic chemistryLigandHydrostatic pressureKineticsGeneral Chemistry010402 general chemistry01 natural sciences0104 chemical sciencesCrystallographyHysteresischemistry.chemical_compoundChemistrychemistrySpin crossoverIsomorphous substitutionFISICA APLICADASingle crystalDerivative (chemistry)Chemical Science
researchProduct

Spin crossover and photomagnetism in dinuclear iron(II) compounds

2007

Abstract In this paper, we review recent work reported in the field of molecular spin crossover phenomena in dinuclear compounds. Following a comprehensive overview on the synthesis and properties of new iron(II) dinuclear compounds presenting the spin crossover phenomenon, we focus this review on recent efforts made in studying and understanding the photo-physical properties of the {[Fe(L)(NCX)2]2bpym} (L = bt or bpym, X = S or Se) family of compounds. Finally, literature on the different theoretical approaches treating the static and dynamic properties of dinuclear complexes presenting two-step thermal spin transition is briefly summarized.

Inorganic ChemistryCrystallographyNuclear magnetic resonanceChemistrySpin crossoverMaterials ChemistrySpin transitionPhysical and Theoretical ChemistryPhotomagnetismLIESSTCoordination Chemistry Reviews
researchProduct

Cover Picture: One Shot Laser Pulse Induced Reversible Spin Transition in the Spin-Crossover Complex [Fe(C4H4N2){Pt(CN)4}] at Room Temperature (Angew…

2005

Phase transitionOne shotChemistrySpin transitionGeneral ChemistryLaserCatalysisPulse (physics)law.inventionsymbols.namesakeNuclear magnetic resonancelawSpin crossoversymbolsCover (algebra)Atomic physicsRaman spectroscopyAngewandte Chemie International Edition
researchProduct

Electrical sensing of the thermal and light induced spin transition in robust contactless spin-crossover/graphene hybrid devices

2022

Hybrid devices based on spin-crossover (SCO)/2D heterostructures grant a highly sensitive platform to detect the spin transition in the molecular SCO component and tune the properties of the 2D material. However, the fragility of the SCO materials upon thermal treatment, light irradiation or contact with surfaces and the methodologies used for their processing have limited their applicability. Here, we report an easily processable and robust SCO/2D hybrid device with outstanding performance based on the sublimable SCO [Fe(Pyrz)2] molecule deposited over CVD-graphene, which is fully compatible with electronics industry protocols. Thus, a novel methodology based on growing an elusive polymorp…

Condensed Matter - Materials ScienceMechanics of MaterialsNanotecnologiaMechanical EngineeringMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesFísicaGeneral Materials ScienceQuímica
researchProduct

Thermal, Pressure and Light Induced Spin Transition in the Two-Dimensional Coordination Polymer [Fe(pmd)2[Cu(CN)2]2]

2008

[EN] A complete structural, calorimetric, and magnetic characterisation of the 2D coordination spin crossover polymer {Fe(pmd)(2)[Cu(CN)(2)](2)} is reported. The crystal structure has been investigated below room temperature at 180 K and 90 K, and at 30 K after irradiating the sample at low temperature with green light ( lambda = 532 nm). The volume cell contraction through the thermal spin transition is only 18 angstrom(3) which is lower than the usually observed value of around 25-30 angstrom(3) while the average Fe-N bond distances decrease by the typical value of about 0.19 angstrom. The structural data of the irradiated state indicate that the high spin state is well induced since the …

chemistry.chemical_classificationSpin statesCondensed matter physicsCoordination polymerSpin transitionThermodynamicsCrystal structurePolymerInorganic Chemistrychemistry.chemical_compoundchemistrySpin crossoverFISICA APLICADAThermalIrradiation
researchProduct

Cooperative Thermal and Optical Switching of Spin States in a New Two-Dimensional Coordination Polymer

2003

{Fe(pmd)2[Cu(CN)2]2} (pmd = pyrimidine) displays a rigid two-dimensional structure and undergoes thermal- and optical-driven spin crossover behaviour; cooperative elastic coupling between iron(II) ions in the framework induces thermal hysteresis in the HS↔LS conversion and sigmoidal HS→LS relaxation of the photo-induced HS state at low temperatures. Niel, Virginie, Virginie.Niel@uv.es ; Galet Domingo, Ana Guadalupe, Ana.Galet@uv.es ; Gaspar Pedros, Ana Belen, Ana.B.Gaspar@uv.es ; Real Cabezos, Jose Antonio, Jose.A.Real@uv.es

Switching ; Thermal ; Optical ; Low temperatures ; Hysteresis ; SpinSpin statesCoordination polymerUNESCO::QUÍMICAMolecular physics:QUÍMICA [UNESCO]CatalysisIonchemistry.chemical_compoundSpinSpin crossoverThermalMaterials ChemistryLow temperaturesSpin (physics)CouplingChemistryHysteresisRelaxation (NMR)Metals and Alloys:QUÍMICA::Química física [UNESCO]CROSSOVERGeneral ChemistrySurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsHysteresisCONVERSIONFISICA APLICADASwitchingUNESCO::QUÍMICA::Química físicaCeramics and CompositesOptical
researchProduct

Synthesis of Nanocrystals and Particle Size Effects Studies on the Thermally Induced Spin Transition of the Model Spin Crossover Compound [Fe(phen)2(…

2015

Surfactant-free nanocrystals of the model spin-crossover compound [Fe(phen)2(NCS)2] (phen: 1,10-phenanthroline) have been synthesized applying the reverse micelle technique. The morphology of the nanocrystals, characterized by scanning electronic microscopy, corresponds to rhombohedric platelets with dimensions ranging from 203 × 203 × 106 nm to 142 × 142 × 74 nm. Variation of the concentration of the Fe(BF4)2·6H2O salt in the synthesis has been found to have little influence on the crystallite size. In contrast, the solvent-surfactant ratio (ω) is critical for a good particle growth. The spin transition of the nanocrystals has been characterized by magnetic susceptibility measurements and …

Inorganic ChemistryNuclear magnetic resonanceNanocrystalSpin crossoverChemistryMössbauer spectroscopySpin transitionAnalytical chemistryCrystalliteParticle sizePhysical and Theoretical ChemistryMicelleMagnetic susceptibilityInorganic chemistry
researchProduct

Extrinsicvs.intrinsic luminescence and their interplay with spin crossover in 3D Hofmann-type coordination polymers

2020

The research of new multifunctional materials, as those undergoing spin crossover (SCO) and luminescent properties, is extremely important in the development of further optical and electronic switching devices. As a new step towards this ambitious aim, the coupling of SCO and fluorescence is presented here following two main strategies: whether the fluorescent agent is integrated as a part of the main structure of a 3D SCO coordination polymer {FeII(bpan)[MI(CN)2]2} (bpan = bis(4-pyridyl)anthracene, MI = Ag (FebpanAg), Au (FebpanAu)) or is a guest molecule inserted within the cavities of the 3D switchable framework {FeII(bpb)[MI(CN)2]2}·pyrene (bpb = bis(4-pyridyl)butadiyne, MI = Ag (FebpbA…

chemistry.chemical_classificationAnthraceneMaterials scienceCoordination polymer02 engineering and technologyGeneral ChemistryPolymer010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesFluorescence0104 chemical sciencesCrystallographychemistry.chemical_compoundchemistrySpin crossoverMaterials ChemistryMoleculeAbsorption (chemistry)0210 nano-technologyLuminescenceJournal of Materials Chemistry C
researchProduct

Clathration of Five-Membered Aromatic Rings in the Bimetallic Spin Crossover Metal–Organic Framework [Fe(TPT)2/3{MI(CN)2}2]·G (MI = Ag, Au)

2014

Six clathrate compounds of the three-dimensional spin crossover metal−organic framework formulated [Fe(TPT)2/3{MI (CN)2}2]· nG, where TPT is 2,4,6-tris(4-pyridyl)-1,3,5-triazine, MI = Ag or Au and G represent the guest molecules furan, pyrrole and thiophene, were synthesized using slow diffusion techniques. The clathrate compounds were characterized by single-crystal X-ray diffraction at 120 and 300 K, thermogravimetric analysis and thermal dependence of the magnetic susceptibility. All compounds crystallize in the R3̅ m trigonal space group. The FeII defines a unique [FeN6] crystallographic site with the equatorial positions occupied by four dicyanometallate ligands while the axial positio…

PhotochemistryIron (ii) complexeschemistry.chemical_compoundPorous coordination polymersSpin crossoverFuranPressureThiopheneMoleculeGeneral Materials ScienceModulationBehaviorTransition-temperatureLigandAromaticityGeneral ChemistryCondensed Matter PhysicsMolecular materialsCrystallographychemistryFISICA APLICADAMetal-organic frameworkBistabilityNetworksStateNatural bond orbitalCrystal Growth & Design
researchProduct

Strong Cooperative Spin Crossover in 2D and 3D FeII −MI,II HofmannLike Coordination Polymers Based on 2‑Fluoropyrazine

2016

Self-assembling iron(II), 2-fluoropyrazine (Fpz), and [MII(CN)4] 2− (MII = Ni, Pd, Pt) or [AuI (CN)2] − building blocks have afforded a new series of two- (2D) and threedimensional (3D) Hofmann-like spin crossover (SCO) coordination polymers with strong cooperative magnetic, calorimetric, and optical properties. The iron(II) ions, lying on inversion centers, define elongated octahedrons equatorially surrounded by four equivalent centrosymmetric μ4-[MII(CN)4]2− groups. The axial positions are occupied by two terminal Fpz ligands affording significantly corrugated 2D layers {Fe(Fpz)2([MII(CN)4]}. The Pt and Pd derivatives undergo thermal- and light-induced SCO characterized by T1/2 temperatur…

chemistry.chemical_classification010405 organic chemistryPolymer010402 general chemistry01 natural sciences0104 chemical sciencesIonInorganic ChemistryCrystallographyNuclear magnetic resonancechemistrySpin crossoverFISICA APLICADAPhysical and Theoretical Chemistry
researchProduct

Electrochemical synthesis and structural characterization of Co(II), Ni(II) and Cu(II) complexes of N,N-bis(4,5-dimethyl-2-hydroxybenzyl)-N-(2-pyridy…

2009

The electrochemical oxidation of anodic metal (cobalt, nickel or copper) in a cell containing an acetonitrile solution of the ligand N,N-bis(4,5-dimethyl-2-hydroxybenzyl)-N-(2-pyridylmethyl)amine (H2L) affords complexes [Co2L2].H2O (1), [Ni3L3] (2) and [Cu2L2] 3H2O (4). On using nickel as the anode and the addition to the solution electrolytic phase of the amount of water necessary to saturate the solution, the electrolytic process gave rise to the new compound [Ni2L2(H2O)1.5].CH3CN (3). Compounds 1 and 4 are dimeric and the metal atoms are pentacoordinated. Compound 3 also consists of dimeric neutral molecules with the nickel atoms in both penta- and hexacoordinated environments. The cryst…

Models MolecularPyridinesInorganic chemistrychemistry.chemical_elementCrystal structureCrystallography X-RayLigandsInorganic ChemistryMetalchemistry.chemical_compoundNickelElectrochemistryOrganometallic CompoundsMoleculeAminesAcetonitrileMolecular StructureLigandCobaltNickelCrystallographychemistryIntramolecular forcevisual_artvisual_art.visual_art_mediumCobaltOxidation-ReductionCopperDalton transactions (Cambridge, England : 2003)
researchProduct

Oxidative Addition of Halogens on Open Metal Sites in a Microporous Spin-Crossover Coordination Polymer

2009

PolymersCoordination polymeroxidative additionMolecular ConformationchemisorptionPhotochemistryCatalysisMetalchemistry.chemical_compoundHalogensX-Ray Diffractionspin crossoverSpin crossoverPlatinumporous compoundsBinding SitesGeneral ChemistryMicroporous materialGeneral MedicineOxidative additioncoordination polymerschemistryMetalsChemisorptionvisual_artX-ray crystallographyHalogenvisual_art.visual_art_mediumOxidation-ReductionAngewandte Chemie
researchProduct

Pressure Effect Investigations on the Spin Crossover Systems{Fe[H 2 B(pz) 2 ] 2 (bipy)} and {Fe[H 2 B(pz) 2 ] 2 (phen)}

2006

Pressure effect studies on the spin crossover behaviour of the mononuclear compounds {Fe[H2B(pz)2]2(bipy)}(1) and {Fe[H2B(pz)2]2(phen)}(2) have been performed in the range of 105 Pa–1.02 GPa at variable temperatures (100–310 K). Continuous spin transitions and displacement of its characteristic temperature has been observed for 1 with increasing pressure. Meanwhile the response of 2 under applied pressures is quite unexpected, and can only be understood in terms of a crystallographic phase transition or change in the bulk modulus of the compound. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2006)

Inorganic ChemistryCrystallographyBulk modulusPhase transitionNuclear magnetic resonanceChemistrySpin crossoverSpin transitionSpin (physics)European Journal of Inorganic Chemistry
researchProduct

Light Induced Excited Pair Spin State in an Iron(II) Binuclear Spin-Crossover Compound

1999

Colloid and Surface ChemistrySpin statesSpin crossoverChemistryExcited stateLight inducedGeneral ChemistryAtomic physicsBiochemistryCatalysisJournal of the American Chemical Society
researchProduct

The Effect of Pressure on the Cooperative Spin Transition in the 2D Coordination Polymer {Fe(phpy) 2 [Ni(CN) 4 ]}

2013

The effect of pressure on the spin-transition properties of the 2D coordination polymer {Fe(phpy)2[Ni(CN)4]} is reported. The study has been carried out by means of variable-temperature (10–310 K) magnetic susceptibility measurements at applied pressures of 105 Pa to 1.0 GPa and spectroscopic studies in the visible region at room temperature (105 Pa–3.0 GPa). As the pressure is increased, the characteristic temperature of the spin transition is displaced to higher temperatures and the thermal hysteresis loop disappears. A cooperative first-order spin transition characterized by a piezo-hysteresis loop about 0.3 GPa wide was observed at 293 K.

Inorganic ChemistryLoop (topology)Condensed Matter::Materials Sciencechemistry.chemical_compoundThermal hysteresisNuclear magnetic resonanceCondensed matter physicsChemistrySpin crossoverCoordination polymerSpin transitionCondensed Matter::Strongly Correlated ElectronsMagnetic susceptibilityEuropean Journal of Inorganic Chemistry
researchProduct

Structural, magnetic and calorimetric studies of a crystalline phase of the spin crossover compound [Fe(tzpy)2(NCSe)2]

2013

The compound [Fe(tzpy)2(NCSe)2] (tzpy = 3-(2-pyridyl)-[1,2,3]triazolo[1,5-a]pyridine)) has been synthesized and its crystal structure, magnetic behavior and calorimetric properties investigated. Samples constituted of single crystals of [Fe(tzpy)2(NCSe) 2] display a relatively cooperative spin-state change centered at T1/2 ¿ 251.7 K with a hysteresis loop 3.5 K wide. The average enthalpy (¿H) and entropy (¿S) changes upon the spin crossover behavior (SCO) obtained from DSC measurements are 11.1 ± 0.4 kJ mol -1 and 44.5 ± 3 J K-1 mol-1, respectively. The magnetic and calorimetric data have been satisfactorily simulated using the mean-field regular solution model (Slichter-Drickamer) and the …

ChemistryIntermolecular forceEnthalpyRegular solutionGeneral ChemistryCrystal structureCondensed Matter Physicschemistry.chemical_compoundCrystallographySpin crossoverIntramolecular forceFISICA APLICADAPyridineGeneral Materials ScienceEntropy (order and disorder)
researchProduct

Downsizing of Nanocrystals While Retaining Bistable Spin Crossover Properties in Three-Dimensional Hofmann-Type {Fe(pz)[Pt(CN)4]}–Iodine Adducts

2021

Mastering nanostructuration of functional materials into electronic devices is presently an essential task in materials science. This is particularly relevant for spin crossover (SCO) compounds, whose properties are extremely sensitive to size reduction. Indeed, the search for materials displaying strong cooperative hysteretic SCO properties operative at the nanoscale close near room temperature is extremely challenging. In this context, we describe here the synthesis and characterization of 20-30 nm surfactant-free nanocrystals of the FeII Hofmann-type polymer {FeII(pz)[PtII,IVIx(CN)4]} (pz = pyrazine), which affords the first example of a robust three-dimensional coordination polymer, sub…

chemistry.chemical_classificationBistabilityPyrazine010405 organic chemistryCoordination polymerContext (language use)Polymer010402 general chemistry01 natural sciences0104 chemical sciencesCharacterization (materials science)Inorganic ChemistryCrystallographychemistry.chemical_compoundchemistryNanocrystalSpin crossoverPhysical and Theoretical ChemistryInorganic Chemistry
researchProduct

Guest Removal and External Pressure Variation Induce Spin Crossover in Halogen-Functionalized 2-D Hofmann Frameworks.

2020

The effect of halogen functionalization on the spin crossover (SCO) properties of a family of 2-D Hofmann framework materials, [FeIIPd(CN)4(thioX)2]·2H2O (X = Cl and Br; thioCl = (E)-1-(5-chlorothiophen-2-yl)-N-(4H-1,2,4-triazol-4-yl)methanimine) and thioBr = (E)-1-(5-bromothiophen-2-yl)-N-(4H-1,2,4-triazol-4-yl)methanimine)), is reported. Inclusion of both the chloro- and bromo-functionalized ligands into the Hofmann-type frameworks (1Cl·2H2O and 2Br·2H2O) results in a blocking of spin-state transitions due to internal chemical pressure effects derived by the collective steric bulk of the halogen atoms and guest molecules. Cooperative one-step SCO transitions are revealed by either guest r…

Steric effects010405 organic chemistryChemistryTransition temperature010402 general chemistry01 natural sciencesMagnetic susceptibility0104 chemical sciencesInorganic ChemistrySolventCrystallographySpin crossoverHalogenMoleculePhysical and Theoretical ChemistrySingle crystalInorganic chemistry
researchProduct

Innentitelbild: Bidirectional Chemo‐Switching of Spin State in a Microporous Framework (Angew. Chem. 26/2009)

2009

Das chemische Schalten des Magnetismus in zwei Richtungen wurde in einem mikroporosen Koordinationspolymer mit Spin-Crossover-Einheiten beobachtet. M. Ohba, J. A. Real, S. Kitagawa und Mitarbeiter stellten in ihrer Zuschrift auf S. 4861 ff. magnetische Messungen vor, die belegen, dass die meisten Gastmolekule einen Ubergang des Netzwerks vom diamagnetischen Low-Spin- (rot) in den paramagnetischen High-Spin-Zustand (gelb) bewirken. Allein CS2 stabilisiert den Low-Spin-Zustand. Die induzierten Spinzustande werden auch nach Freisetzung der Gastspezies beibehalten.

PhysicsCrystallographySpin statesGeneral MedicineMicroporous materialAngewandte Chemie
researchProduct

Pressure Effect Studies on the Spin Transition of Microporous 3D Polymer [Fe(pz)Pt(CN)4]

2018

Pressure effects on the spin transition of the three-dimensional (3D) porous coordination polymer {Fe(pz)[Pt(CN)4]} have been investigated in the interval 105 Pa–1.0 GPa through variable-temperature (10–320 K) magnetic susceptibility measurements and spectroscopic studies in the visible region at room temperature. These studies have disclosed a different behavior of the compound under pressure. In the magnetic experiments, a temperature independent paramagnetic behavior has been observed under 0.4 GPa. In contrast, at room temperature and at 0.8 GPa, a complete HS-to-LS transition has been evidenced. The differences in the magnetic behavior are strongly related with the porous structure of …

chemistry.chemical_classificationCoordination polymerSpin transitionAnalytical chemistry02 engineering and technologyPolymerMicroporous material010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesMagnetic susceptibility0104 chemical sciencesInorganic Chemistrychemistry.chemical_compoundParamagnetismAdsorptionchemistryPhysical and Theoretical Chemistry0210 nano-technologyPorosityInorganic Chemistry
researchProduct

From magnetic to nonlinear optical switches in spin-crossover complexes

2013

ISI Document Delivery No.: 109TF Times Cited: 0 Cited Reference Count: 173 Lacroix, Pascal G. Malfant, Isabelle Real, Jose-Antonio Rodriguez, Vincent Wiley-v c h verlag gmbh Weinheim Si; Various attempts to combine magnetic and nonlinear optical (NLO) properties in a molecule are reviewed, with a special focus on the possibility of interplay between the magnetic component and the quadratic (proportional to E-2) NLO response. This multidisciplinary research leads to the idea of spin-crossover-induced (SCO-induced) NLO switching and is evaluated at the synthetic level, with insights provided by computational chemistry. The need for nontraditional experimental setups to record NLO properties i…

Computational chemistryNonlinear opticsroom-temperaturetransition-metal-complexesSolid-stateNanotechnology02 engineering and technology010402 general chemistry01 natural scienceselectrical-conductivityInorganic ChemistryNonlinear opticalQuadratic equationSpin crossoverbinuclear iron(iii) complexesMagnetic componentsMoleculenlo propertiesNuclear Experimentliquid-crystalCondensed matter physicsChemistryNonlinear optics021001 nanoscience & nanotechnologySpin crossoverMaterials science0104 chemical sciences2nd-harmonic generationHigh Energy Physics::Experimentschiff-base ligandsray crystal-structure0210 nano-technologyFocus (optics)hyper-rayleigh scatteringMolecular devices
researchProduct

Raman spectroscopy of the high- and low-spin states of the spin crossover complex Fe(phen)2(NCS)2: an initial approach to estimation of vibrational c…

2000

Abstract Raman spectra of the spin-crossover complex Fe(phen)2(NCS)2 in the solid state have been recorded at 785 nm as a function of temperature to investigate the contribution of intramolecular vibrations to the entropy change, ΔS, associated with spin crossover. The modes of major interest for estimating the contribution lie in the range 100–500 cm−1, where the largest qualitative changes with temperature in the Raman spectra were observed. Analysis of these data, with the working assumption of an average frequency in this range as representative of the 15 distortion modes of an idealised FeN6 octahedron, leads to the conclusion that the intramolecular vibrations represent a primary cont…

Spin statesChemistryAnalytical chemistrySolid-stateGeneral Physics and AstronomyMolecular physicsVibrationsymbols.namesakeOctahedronSpin crossoverIntramolecular forcesymbolsCoherent anti-Stokes Raman spectroscopyPhysical and Theoretical ChemistryRaman spectroscopyChemical Physics Letters
researchProduct

A Switchable Molecular Rotator: Neutron Spectroscopy Study on a Polymeric Spin-Crossover Compound

2012

A quasielastic neutron scattering and solid-state 2H NMR spectroscopy study of the polymeric spin-crossover compound {Fe(pyrazine)[Pt(CN) 4]} shows that the switching of the rotation of a molecular fragment-the pyrazine ligand-occurs in association with the change of spin state. The rotation switching was examined on a wide time scale (10 -13-10 -3 s) by both techniques, which clearly demonstrated the combination between molecular rotation and spin-crossover transition under external stimuli (temperature and chemical). The pyrazine rings are seen to perform a 4-fold jump motion about the coordinating nitrogen axis in the high-spin state. In the low-spin state, however, the motion is suppres…

Spin statesPyrazineFrameworkNanotechnologyBiochemistryCrystalsCatalysischemistry.chemical_compoundColloid and Surface ChemistrySpin crossoverPorous Coordination PolymersMoleculeSpectroscopyChemistryGeneral ChemistryNeutron spectroscopyDynamicsCrystallographyRotorsFISICA APLICADAQuasielastic neutron scatteringTransitionProton NMRMachinesCondensed Matter::Strongly Correlated ElectronsRoom-TemperatureState
researchProduct

Critical temperature of the LIESST effect in iron(II) spin crossover compounds

1999

Abstract The light-induced crossover in a series of iron(II) compounds has been investigated by irradiating the sample at 10 K with a Kr + laser coupled to an optical fiber within a SQUID cavity. The temperature dependence of the molar fraction of the light-induced metastable HS state has been recorded for 22 compounds. The critical LIESST temperature, T c (LIESST), has been defined as the temperature for which the light-induced HS information was erased in the SQUID cavity. The dependence of T c (LIESST) as a function of the thermal spin crossover temperature, T 1/2 , has been discussed. The effect of cooperation has been analyzed and the influence of horizontal and vertical displacements …

SquidCondensed matter physicsbiologyChemistryAnalytical chemistryGeneral Physics and AstronomyMole fractionPhotomagnetismLaserLIESSTlaw.inventionSpin crossoverlawbiology.animalMetastabilityThermalPhysical and Theoretical ChemistryChemical Physics Letters
researchProduct

Thermo- and photo-modulation of exciplex fluorescence in a 3D spin crossover Hofmann-type coordination polymer

2018

[EN] The search for bifunctional materials showing synergies between spin crossover (SCO) and luminescence has attracted substantial interest since they could be promising platforms for new switching electronic and optical technologies. In this context, we present the first three-dimensional Fe-II Hofmann-type coordination polymer exhibiting SCO properties and luminescence. The complex {Fe-II(bpben)[Au(CN)(2)]}@pyr (bpben = 1,4-bis(4-pyridyl)benzene) functionalized with pyrene (pyr) guests undergoes a cooperative multi-step SCO, which has been investigated by single crystal X-ray diffraction, single crystal UV-Vis absorption spectroscopy, and magnetic and calorimetric measurements. The resu…

Materials scienceAbsorption spectroscopyCoordination polymerPopulationContext (language use)02 engineering and technology010402 general chemistryPhotochemistry01 natural sciencesLIESSTEmissionchemistry.chemical_compoundComplexesSpin crossoverPressureeducationFE(ABPT)(2)(NCX)(2) XBehavioreducation.field_of_studyNanocompositeHysteresisGeneral Chemistry021001 nanoscience & nanotechnology0104 chemical sciencesChemistrychemistryFISICA APLICADATransitionNetworks0210 nano-technologyLuminescenceSingle crystalStateChemical Science
researchProduct

Heteroleptic Iron(II) Spin-Crossover Complexes Based on a 2,6-Bis(pyrazol-1-yl)pyridine-type Ligand Functionalized with a Carboxylic Acid

2019

Two new heteroleptic complexes [Fe- (1bppCOOH)(3bpp-bph)](ClO4)2·solv (1·solv, solv = various solvents; 1bppCOOH = 2,6-bis(1H-pyrazol-1-yl)- isonicotinic acid; 3bpp-bph = 2,6-bis(5-([1,1′-biphenyl]-4- yl)-1H-pyrazol-3-yl)pyridine) and [Fe(1bppCOOH)- (1bppCOOEt)](ClO4)2 ·0.5Me2CO (2·0.5Me2CO, 1bppCOOEt = ethyl 2,6-bis(1H-pyrazol-1-yl)isonicotinate) were designed and prepared. The heteroleptic compound 1· solv was obtained by the combination of stoichiometric amounts of Fe(ClO4)2, 1bppCOOH, and 3bpp-bph, and it was designed to fine-tune the spin crossover (SCO) properties with respect to the previously reported homoleptic compound [Fe(1bppCOOH)2](ClO4)2. Indeed, the introduction of a new subs…

chemistry.chemical_classification010405 organic chemistryLigandCarboxylic acidEnllaços químicsQuímica organometàl·licaKetones010402 general chemistryIsonicotinic acidLigands01 natural sciencesMedicinal chemistry0104 chemical sciencesInorganic Chemistrychemistry.chemical_compoundLligandschemistrySpin crossoverCetonesPyridineCompostos de coordinacióPhysical and Theoretical ChemistryInorganic Chemistry
researchProduct

Long-range magnetic order in the porous metal–organic framework Ni(pyrazine)[Pt(CN)4]

2017

A combined study involving DFT calculations, neutron scattering, heat capacity and magnetic measurements at very low temperatures demonstrates the long-range magnetic ordering of Ni(pyrazine)[Pt(CN)4] below 1.9 K, describing its antiferromagnetic spin arrangement. This compound belongs to the family of porous coordination polymers M(pyrazine)[Pt(CN)4] (M = divalent metal), renowned for showing interesting combinations of porosity and magnetic properties. The possibility of including long-range magnetic ordering, one of the most pursued functional properties, opens new perspectives for the multifunctionality of this class of compounds.

Range (particle radiation)PyrazineChemistryMagnetic orderInorganic chemistryGeneral Physics and Astronomy02 engineering and technologyNeutron scattering010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesHeat capacity0104 chemical scienceschemistry.chemical_compoundCrystallographyAntiferromagnetismCondensed Matter::Strongly Correlated Electrons[PHYS.COND.CM-SCE]Physics [physics]/Condensed Matter [cond-mat]/Strongly Correlated Electrons [cond-mat.str-el]Physical and Theoretical Chemistry0210 nano-technologySpin (physics)PorosityComputingMilieux_MISCELLANEOUSPhysical Chemistry Chemical Physics
researchProduct

Quantum Tunneling of Magnetization under Pressure in the High-Spin Mn12 Molecular System

2004

Experimental and theoretical investigations of quantum tunneling magnetization in the high-spin cluster [Mn 1 2 O 1 2 (CH 3 COO) 1 6 (H 2 O) 4 ].2CH 3 COOH.4H 2 O under pressure have been performed. The main observation is that the blocking temperature and hysteresis width decrease under the effect of pressure. However, the position of the steps in the magnetization versus field curve does not change noticeably as pressure increases. A theoretical examination of the pressure influence on the relaxation rate and magnetization has been carried out taking into consideration the quantum tunneling effects. The qualitative agreement between theory and experiment has been achieved both at atmosphe…

MagnetizationHysteresisField (physics)Condensed matter physicsRelaxation rateChemistryMaterials ChemistryCluster (physics)Physical and Theoretical ChemistryAnisotropyQuantum tunnellingSurfaces Coatings and FilmsSpin-½The Journal of Physical Chemistry B
researchProduct

The two-dimensional iron(ii)–thiocyanate–4,4′-bipyridine coordination network

2010

The crystal structures of eight solvates of {Fe(4,4′-bipyridine)2(NCS)2}n have been determined. All of them contain a layered iron–bipyridine–thiocyanate framework formed from approximately square infinite two-dimensional (4,4) iron–bipyridine grids, with the solvent molecules hosted between adjacent layers. All the structures contain the iron(II) centres in the high-spin electronic configuration, and magnetic susceptibility measurements on the toluene and nitrobenzene solvates do not reveal any spin-crossover behaviour.

ThiocyanateGeneral ChemistryCrystal structureCondensed Matter PhysicsMagnetic susceptibility44'-BipyridineNitrobenzeneSolventchemistry.chemical_compoundCrystallographychemistryMoleculeGeneral Materials ScienceElectron configurationCrystEngComm
researchProduct

Synthesis and X-Ray Single Crystal Structure of Two New Copper Complexes with the Redox Active Ligand 1,10-Phenanthroline-5,6-dione

2005

The synthesis and the crystal structures of the complexes [Cu(LI)2](ClO4) (1) and [Cu(LI)(CH3CN)2(ClO4)2] (2) are reported. 1 crystallizes in the monoclinic space group C2/c with the unit cell dimensions a = 13.169(4), b = 12.289(3), c = 14.732(3) A, β = 109.03(2)° and Z = 4. Copper(I) is coordinated to four N atoms of the two 1,10-Phenanthroline-5,6-dione (LI) ligands with a two-fold axis passing between the ligands. The copper(II) compound 2 crystallizes in the orthorhombic space group Pbn21 with unit cell dimensions of a = 7.498(5), b = 23.492(7), c = 12.363(4) A and Z = 4. Copper(II) coordination can be described as a distorted octahedron with the N donor atoms of one LI ligand and of t…

chemistry.chemical_classificationLigandPhenanthrolinechemistry.chemical_elementCrystal structureCopperCoordination complexInorganic Chemistrychemistry.chemical_compoundCrystallographychemistryOctahedronOrthorhombic crystal systemMonoclinic crystal systemZeitschrift für anorganische und allgemeine Chemie
researchProduct

Strong Ferromagnetic Coupling in Linear Mixed μ-Acetato, μ-Hydroxo Trinuclear Copper(II) Complexes withN-sulfonamide derivatives − Synthesis, Structu…

2002

Inorganic ChemistryCoupling (electronics)chemistry.chemical_classificationCrystallographyFerromagnetismChemistrylawInorganic chemistrychemistry.chemical_elementElectron paramagnetic resonanceCopperlaw.inventionSulfonamideEuropean Journal of Inorganic Chemistry
researchProduct

Solid- and solution-state studies of the novel mu-dicyanamide-bridged dinuclear spin-crossover system {[(Fe(bztpen)]2[mu-N(CN)2]}(PF6)3 x n H2O.

2005

The mononuclear diamagnetic compound {Fe(bztpen)[N(CN)2]} (PF6)CH3OH (1) (bztpen = N-benzyl-N,N′,N′- tris(2-pyridylmethyl)ethylenediamine) has been synthesized and its crystal structure studied. Complex 1 can be considered to be the formal pre-cursor of two new dinuclear, dicyanamide-bridged iron(II) complexes with the generic formula {[(Fe(bztpen)]2[μN(CN)2]}(PF6) 3·nH2O (n = 1 (2) or 0 (3)), which have been characterized in the solid state and in solution. In all three complexes, the iron atoms have a distorted [FeN6] octahedral coordination defined by a bztpen ligand and a terminal (1) or a bridging dicyanamide ligand (2 and 3). In the solid state, 2 and 3 can be considered to be molecu …

Organic ChemistrySpin transitionEthylenediamineGeneral ChemistryCrystal structureCatalysischemistry.chemical_compoundCrystallographyParamagnetismOctahedronchemistrySpin crossoverX-ray crystallographyDicyanamideChemistry (Weinheim an der Bergstrasse, Germany)
researchProduct

Spin-crossover in the [Fe(abpt)2(NCX)2] (X=S, Se) system: Structural, Magnetic, calorimetric and photomagnetic studies

1999

[EN] The compounds [Fe(abpt)(2)(NCS)(2)] (1) and [Fe(abpt)(2)(NCSe)(2)] (2) with abpt = 4-amino-3,5-bis(pyridin-2-yl)-1,2,4-triazole have been synthesized. The X-ray structures have been determined at 293 K. 1 and 2 are isostructural and crystallize in the monoclinic space group P2(1)/n with Z = 2, a = 8.538(8), b = 10.246(8), c = 16.45(2) Angstrom, beta = 93.98(9)degrees for 1 and a = 8.623(2), b = 10.243(3), c = 16.585(3) Angstrom, beta = 93.19(2)degrees for 2. In both complexes, the coordination core has a similar pseudo-octahedral geometry with the NCS- (1) and NCSe- (2) groups in the trans-position. Variable-temperature magnetic susceptibility data give evidence for a low-spin (LS)high…

Spin statesChemistryCrystal structureAtmospheric temperature rangeIron complexesMagnetic susceptibilitySelenocyanate complexesLIESSTInorganic ChemistryCrystallographyThiocyanate complexesSpin crossoverFISICA APLICADACrystal structuresMagnetic propertiesMaterials ChemistryPhysical and Theoretical ChemistryIsostructuralMonoclinic crystal system
researchProduct

Spin‐Crossover 2D Metal–Organic Frameworks with a Redox‐Active Ligand: [Fe(ttf‐adpy) 2 M(CN) 4 ]· n H 2 O (ttf‐adpy = 4‐Tetrathiafulvalenylcarboxamid…

2008

A new ttf (tetrathiofulvalene) ligand containing an amidopyridine moiety was synthesized and characterized. The electrochemical study of the 4-tetrathiofulvalenylcarboxamidopyridine (ttf–adpy) ligand showed two reversible oxidation processes at EI′1/2 = 0.08 V/Fc+–Fc and EII′1/2 = 0.26 V/Fc+–Fc. The crystal structure of [(ttf–adpyH)2Pt(CN)4] (1) was solved at 293 K, where 1 displays the triclinic space group P. The ttf–adpyH+ molecule is planar, and the bond lengths within the ttf core are in the usual range for neutral ttf moieties. The ttf–adpyH+ molecules and the [Pt(CN)4]2– anions organize in a three-dimensional network by means of hydrogen bonds and short S···S contacts. In the network…

Inorganic ChemistryCrystallographyChemistryHydrogen bondLigandSpin crossoverInorganic chemistrySpin transitionMoleculeMetal-organic frameworkCrystal structureAcceptorEuropean Journal of Inorganic Chemistry
researchProduct

Two-step spin crossover behaviour in the chiral one-dimensional coordination polymer [Fe(HAT)(NCS)2]∞

2015

Solvated and unsolvated forms of the complex [Fe(HAT)(NCS)2]∞·(nMeOH) (1) (n = 1.5, 0; HAT = 1,4,5,8,9,12-hexaazatriphenylene) were prepared. The structure of 1·(1.5MeOH), measured at 120 K, showed that this system crystallizes in the homochiral P43 tetragonal space group. The solid is constituted of stacks of one-dimensional coordination polymers running along c-axis. All the FeII centres have the same Λ or Δ conformation and are in the LS state at 120 K. In the range of temperatures 10–300 K the magnetic properties of 1·(1.5MeOH) shows the occurrence of reversible spin crossover behaviour. However, above ca. 310 K complete desolvation of 1·(1.5MeOH) to give 1 was observed from crystal str…

chemistry.chemical_classificationChemistryCoordination polymerGeneral Chemical EngineeringTwo stepEnthalpyGeneral ChemistryCrystal structurePolymerTetragonal crystal systemchemistry.chemical_compoundCrystallographySpin crossoverThermal analysisRSC Advances
researchProduct

Spin crossover in a catenane supramolecular system.

1995

The compound [Fe(tvp)(2)(NCS)(2)] . CH(3)OH, where tvp is 1,2-di-(4-pyridyl)-ethylene, has been synthesized and characterized by x-ray single-crystal diffraction. It consists of two perpendicular, two-dimensional networks organized in parallel stacks of sheets made up of edge-shared [Fe(II)](4) rhombuses. The fully interlocked networks define large square channels in the [001] direction. Variable-temperature magnetic susceptibility measurements and Mossbauer studies reveal that this compound shows low-spin to high-spin crossover behavior in the temperature range from 100 to 250 kelvin. The combined structural and magnetic characterization of this kind of compound is fundamental for the inte…

Molecular switchCrystallographyMultidisciplinaryStereochemistrySpin crossoverChemistryCrossoverX-ray crystallographyCatenaneSupramolecular chemistryAtmospheric temperature rangeMagnetic susceptibilityScience (New York, N.Y.)
researchProduct

Temperature and pressure effects on the spin state of ferric ions in the [Fe(sal2-trien)][Ni(dmit)2] spin crossover complex

2008

Abstract Thermal and pressure effects have been investigated on the [Fe(sal 2 -trien)][Ni(dmit) 2 ] spin crossover complex by means of Mossbauer spectroscopic, calorimetric, X-ray diffraction and magnetic susceptibility measurements. The complex displays a complete thermal spin transition between the S = 5 2 and S = 1 2 spin states of Fe III near 245 K with a hysteresis loop of ca. 30 K. This transition is characterised by a change of the enthalpy, Δ H HL =7 kJ/mol, entropy, Δ S HL =29 J/Kmol, and the unit cell volume, Δ V HL =15.4 A 3 . Under hydrostatic pressures up to 5.7 kbar the thermal transition shifts to higher temperatures by ca. 16 K/kbar. Interestingly, at a low applied pressure …

Condensed matter physicsSpin statesChemistryHydrostatic pressureEnthalpySpin transitionAnalytical chemistry02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnologyCondensed Matter PhysicsMagnetic hysteresis01 natural sciencesMagnetic susceptibility0104 chemical sciencesDifferential scanning calorimetrySpin crossoverGeneral Materials Science0210 nano-technologyJournal of Physics and Chemistry of Solids
researchProduct

An investigation of photo- and pressure-induced effects in a pair of isostructural two-dimensional spin-crossover framework materials

2014

International audience; Two new isostructural iron(II) spin-crossover (SCO) framework (SCOF) materials of the type [Fe(dpms)2 (NCX)2 ] (dpms=4,4'-dipyridylmethyl sulfide; X=S (SCOF-6(S)), X=Se (SCOF-6(Se))) have been synthesized. The 2D framework materials consist of undulating and interpenetrated rhomboid (4,4) nets. SCOF-6(S) displays an incomplete SCO transition with only approximately 30 % conversion of high-spin (HS) to low-spin iron(II) sites over the temperature range 300-4 K (T1/2 =75 K). In contrast, the NCSe(-) analogue, SCOF-6(Se), displays a complete SCO transition (T1/2 =135 K). Photomagnetic characterizations reveal quantitative light- induced excited spin-state trapping (LIES…

010405 organic chemistryChemistryIronOrganic ChemistrySpin transitionMineralogyGeneral Chemistry[CHIM.MATE]Chemical Sciences/Material chemistryAtmospheric temperature range010402 general chemistrySpin crossover01 natural sciencesCatalysisLIESST0104 chemical sciencesCoordination polymersChalcogenCrystallographySpin crossoverExcited stateMetastabilityMagnetic propertiesChalcogensIsostructural
researchProduct

Spin Crossover Phenomenon in Nanocrystals and Nanoparticles of [Fe(3-Fpy)2M(CN)4] (MII = Ni, Pd, Pt) Two-Dimensional Coordination Polymers

2010

The two-dimensional spin crossover (SCO) polymers [Fe(3-Fpy)2M(CN)4] (MII = Ni(1), Pd(2), Pt(3)) were nanostructured in the form of nanocrystals and nanoparticles, and their chemical, structural, and physical characterization was carried out using different experimental methods (powder X-ray diffraction, magnetic susceptibility measurements, Mossbauer and infrared spectroscopy, transmission and scanning electronic microscopy, etc.). Surfactant-free nanocrystals of average dimensions 400 × 400 × 30 nm (1a, 1a*, 2a, 3a) were synthesized from water in oil microemulsions (w/o) while nanoparticles of average size 200 × 100, 100 × 60, and 70 × 30 nm were obtained in poly(vinylpyrrolidone) (PVP) c…

Materials scienceGeneral Chemical EngineeringSpin transitionNanoparticleInfrared spectroscopyGeneral ChemistryMagnetic susceptibilityCrystalNuclear magnetic resonanceSpin crossoverMössbauer spectroscopyMaterials ChemistryPhysical chemistryMicroemulsionChemistry of Materials
researchProduct

Synthesis, crystal structure and magnetic properties of the chiral iron(II) chain [Fe(bpym)(NCS)2]n (bpym = 2,2′-bipyrimidine)

1996

Abstract The iron(II) compound of formula [Fe(bpym)(NCS)2]n (bpym = 2,2′-bipyrimidine) has been synthesized and its crystal structure determined by X-ray diffraction methods. It crystallizes in the tetragonal P41 (No. 76) and P43 space groups, a = 8.849(2), c=16.486(3) A , V=1290.9(5) A 3 , Z=4, D c =1.699 g cm −3 , M r =330.2, F(000)=664, λ( Mo K α)=0.71073 A , μ( Mo K α)=14.8 cm −1 and T=295 K. A total of 2449 reflections was collected over the range 3≤2ϑ≤55°; of these, 1657 were unique and 1321 were considered as observed (13σ(I)) and used in the structural analysis. The final R and Rw residuals were 0.027 and 0.026, respectively. The structure is made up of chiral (Δ and Λ enantiomers c…

ChemistrySpace groupCrystal structureMagnetic susceptibilityInorganic ChemistryMetalCrystallographyTetragonal crystal systemOctahedronvisual_artAtomMaterials Chemistryvisual_art.visual_art_mediumAntiferromagnetismPhysical and Theoretical ChemistryInorganica Chimica Acta
researchProduct

Effect of nanostructuration on the spin crossover transition in crystalline ultrathin films† †Electronic supplementary information (ESI) available: M…

2019

Film thickness and microstructure critically affect the spin crossover transition of a 2D coordination polymer.

FabricationMaterials scienceChemistry MultidisciplinarySpin transitionNanotechnology010402 general chemistry01 natural sciencesCondensed Matter::Materials ScienceTHIN-FILMSSpin crossoverMETAL-ORGANIC FRAMEWORKCondensed Matter::SuperconductivityNANOPARTICLESThin film[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat]Nanoscopic scaleTEMPERATUREComputingMilieux_MISCELLANEOUSchemistry.chemical_classificationQuantitative Biology::BiomoleculesScience & Technology010405 organic chemistryGeneral ChemistryPolymerQuímicaMicrostructureTHERMAL HYSTERESIS0104 chemical sciencesCondensed Matter::Soft Condensed MatterChemistrySIZENanocrystalchemistryLAYERVACUUMPhysical SciencesPHASE-TRANSITIONSCondensed Matter::Strongly Correlated ElectronsCOORDINATION POLYMERSChemical Science
researchProduct

Temperature- and pressure-dependent structural study of {Fe(pmd) 2[Ag(CN)2 ]2}n spin-crossover compound by neutron Laue diffraction

2014

The effect of pressure (up to 0.17GPa) on the spin-crossover compound {Fe(pmd)2[Ag(CN)2]2} n [orthorhombic isomer (II), pmd = pyrimidine] has been investigated by temperature- and pressure-dependent neutron Laue diffraction and magnetometry. The cooperative high-spin ↔ low-spin transition, centred at ca 180K at ambient pressure, is shifted to higher temperatures as pressure is applied, showing a moderate sensitivity of the compound to pressure, since the spin transition is displaced by ca 140KGPa-1. The space-group symmetry (orthorhombic Pccn) remains unchanged over the pressure-temperature (P-T) range studied. The main structural consequence of the high-spin to low-spin transition is the c…

Pressure-temperatureChemistryMetals and AlloysSpin transitionChromophoreChromophoresAtomic and Molecular Physics and OpticsSpin-crossover compoundsElectronic Optical and Magnetic MaterialsCrystallographyOctahedronSpin crossoverX-ray crystallographyMaterials ChemistryNeutronOrthorhombic crystal systemMagnetic materialsAmbient pressure
researchProduct

Assembly and encapsulation of coordination tectons driven by hydrogen-bondingand space-filling

2001

[FR] Le composé ¿Fe(LI)3¿2¿Fe(H2O)6¿(ClO4)6 (2), LI = 1,10-phénanthroline-5,6-dione, a été synthétisé et caractérisé. La structure cristalline 2 est définie par un assemblage bidimensionnel non covalent, peu commun, constitué par des tectons chiraux ¿Fe(LI)3¿2+, assemblés par des cations ¿Fe(H2O)6¿2+ encapsulés dans des cages. Ces cages sont formées par 12 liaisons hydrogène établies entre les molécules d¿eau coordinées et les groupes dione appartenant à six molecules chirales ¿Fe(LI)3¿2+ ¿, ¿ alternées.

HydrogenIron(II) low-spin tectonsStereochemistrychemistry.chemical_elementSupramolecular interactionCrystal structureHydrogen bondsPerchloratechemistry.chemical_compoundChemical preparationMoleculeNon-Covalent assemblyInteraction supramoléculaireLigands alpha-diimineDiketoneChemistryHydrogen bondGeneral ChemistryOrthodiquinone ligandsLigands orthodiquinoneAssemblage non covalentCrystallographyFISICA APLICADALiaisons hydrogèneAlpha-Diimine ligandsFer(II) bas spin
researchProduct

One Shot Laser Pulse Induced Reversible Spin Transition in the Spin-Crossover Complex [Fe(C4H4N2){Pt(CN)4}] at Room Temperature

2005

One shotPhase transitionChemistrySpin transitionAnalytical chemistryGeneral ChemistryGeneral MedicineLaserCatalysisPulse (physics)law.inventionsymbols.namesakeSpin crossoverlawsymbolsAtomic physicsRaman spectroscopyAngewandte Chemie
researchProduct

Bistability in Iron(II) Spin-Crossover Systems: A Supramolecular Function

2007

Ligand field theoryBistabilityChemical physicsSpin crossoverChemistrySupramolecular chemistryNanotechnologyFunction (mathematics)
researchProduct

Three-Dimensional Mixed-Ligand Coordination Polymers with Ferromagnetically Coupled Cyclic Tetranuclear Copper(II) Units Bonded by Weak Interactions

2011

The complexes {[Cu(HGLYO)(NO3)(bpy)]·H2O}4 (1), {[Cu(HGLYO)(NO3)(phen)]·H2O}4 (2), and [Cu(HLACO)(ClO4)(phen)]4 (3) (bpy is 2,2′-bipyridine, phen is 1,10-phenanthroline, HGLYO is monoanionic glycol...

chemistry.chemical_classificationCrystallographyChemistryInorganic chemistrychemistry.chemical_elementGeneral Materials ScienceGeneral ChemistryMixed ligandPolymerCondensed Matter PhysicsCopperCrystal Growth & Design
researchProduct

Epitaxial Thin-Film vs Single Crystal Growth of 2D Hofmann-Type Iron(II) Materials: A Comparative Assessment of their Bi-Stable Spin Crossover Proper…

2020

Integration of the ON-OFF cooperative spin crossover (SCO) properties of FeII coordination polymers as components of electronic and/or spintronic devices is currently an area of great interest for potential applications. This requires the selection and growth of thin films of the appropriate material onto selected substrates. In this context, two new series of cooperative SCO two-dimensional FeII coordination polymers of the Hofmann-type formulated {FeII(Pym)2[MII(CN)4]·xH2O}n and {FeII(Isoq)2[MII(CN)4]}n (Pym = pyrimidine, Isoq = isoquinoline; MII = Ni, Pd, Pt) have been synthesized, characterized, and the corresponding Pt derivatives selected for fabrication of thin films by liquid-phase …

Materials scienceQuímica organometàl·lica010402 general chemistryEpitaxy01 natural sciencesHofmann-type clathratesspin crossoverSpin crossoverGeneral Materials ScienceHardware_ARITHMETICANDLOGICSTRUCTURESThin filmMaterialschemistry.chemical_classificationSpintronicsSingle crystal growth010405 organic chemistrybusiness.industryepitaxial growthEpitaxial thin filmPolymer0104 chemical sciencescoordination polymersBi stablesize-reduction effectchemistrythin filmsOptoelectronicsbusiness
researchProduct

Ultrathin Films of 2D Hofmann-Type Coordination Polymers: Influence of Pillaring Linkers on Structural Flexibility and Vertical Charge Transport

2019

Searching for novel materials and controlling their nanostructuration into electronic devices is a challenging task ahead of chemists and chemical engineers. Even more so when this new application requires an exquisite control over the morphology, crystallinity, roughness and orientation of the films produced. In this context, it is of critical importance to analyze the influence of the chemical composition of perspective materials on their properties at the nanoscale. We report the fabrication of ultrathin films (thickness < 30 nm) of a family of FeII Hofmann-like coordination polymers by using an optimized liquid phase epitaxy (LPE) set-up. The series [Fe(L)2{Pt(CN)4}] (L = pyridine, pyri…

TechnologyMaterials scienceGeneral Chemical EngineeringMaterials ScienceQuímica organometàl·licaMaterials Science MultidisciplinaryNanotechnology02 engineering and technology010402 general chemistry01 natural sciencesTask (project management)METAL-ORGANIC FRAMEWORKSTHIN-FILMSNANOPARTICLESMaterials ChemistryElectronicsMOLECULAR WIRESLIQUID-METALchemistry.chemical_classificationFlexibility (engineering)Science & TechnologyCONDUCTANCEChemistry PhysicalSPIN-CROSSOVERCharge (physics)General ChemistryPolymerNANOSHEETS021001 nanoscience & nanotechnology0104 chemical sciencesChemistrychemistryLAYERPhysical SciencesMaterials nanoestructurats0210 nano-technologyTRANSITIONChemistry of Materials
researchProduct

Optical investigation of spin-crossover in cobalt(II) bis-terpy complexes

2007

Abstract The spin transition of the [Co(terpy) 2 ] 2+ complex (terpy = 2,2′:6′,2″-terpyridine) is analysed based on experimental data from optical spectroscopy and magnetic susceptibility measurements. The single crystal absorption spectrum of [Co(terpy) 2 ](ClO 4 ) 2 shows an asymmetric absorption band at 14 400 cm −1 with an intensity typical for a spin-allowed d–d transition and a temperature behaviour typical for a thermal spin transition. The single crystal absorption spectra of suggest that in this compound, the complex is essentially in the high-spin state at all temperatures. However, the increase in intensity observed in the region of the low-spin MLCT transition with increasing te…

education.field_of_studyAbsorption spectroscopyChemistryPopulationRelaxation (NMR)Analytical chemistrySpin transitionMagnetic susceptibilityInorganic ChemistryCrystallographyAbsorption bandSpin crossoverddc:540Materials ChemistryCondensed Matter::Strongly Correlated ElectronsPhysical and Theoretical ChemistryeducationSingle crystalInorganica Chimica Acta
researchProduct

Contribution of X-Ray diffraction to the study of spin transitions in some iron (II) complexes

1991

Abstract A review of recent single crystal investigations under constraint of iron (II) spin crossover complexes is given. The systems covered are Fe L2 (NCS)2 complexes (L = Phen, Btz) and some analogous derivatives. Emphasis is laid on the correlations between structural changes associated with spin transitions and the experimentally determined characteristics of these transitions.

CrystallographySpin crossoverChemistryX-ray crystallographySpin transitionGeneral Materials ScienceSpin (physics)InstrumentationSingle crystalPhase Transitions
researchProduct

Metal complexes of anxiolitic drugs. X-Ray crystal structure and electronic properties of aquobromazepam(oxalato O1 O2) copper(II)

1987

The crystal structure of the title compound has been determined from single-crystal x-ray diffraction data. The copper(II) ion is surrounded by two nitrogen atoms of the bromazepam** molecule [N(imine) and N(pyridine)], and two oxygen atoms of the oxalate ion in a square planar arrangement. One molecule of water is linked to the copper(II) ion in the axial position. The complex has been also characterized by electronic, e.s.r. and i.r. spectra.

ImineMetals and Alloyschemistry.chemical_elementCrystal structureComputer Science::Computational GeometryCopperOxalateIonInorganic Chemistrychemistry.chemical_compoundCrystallographychemistryPyridineMaterials ChemistryMoleculeOrganometallic chemistryTransition Metal Chemistry
researchProduct

First glimpse of the soft x-ray induced excited spin-state trapping effect dynamics on spin cross-over molecules.

2013

The dynamics of the soft x-ray induced excited spin state trapping (SOXIESST) effect of Fe(phen)(2)(NCS)(2) (Fe-phen) powder have been investigated by x-ray absorption spectroscopy (XAS) using the total electron yield method, in a wide temperature range. The low-spin (LS) state is excited into the metastable high-spin (HS) state at a rate that depends on the intensity of the x-ray illumination it receives, and both the temperature and the intensity of the x-ray illumination will affect the maximum HS proportion that is reached. We find that the SOXIESST HS spin state transforms back to the LS state at a rate that is similar to that found for the light induced excited spin state trapping (LI…

Absorption spectroscopySpin statesChemistryChimie/MatériauxMetastabilityExcited stateTransition temperatureGeneral Physics and AstronomyPhysical and Theoretical ChemistryAtmospheric temperature rangeAtomic physicsLIESSTSpin-½The Journal of chemical physics
researchProduct

Two- and one-step cooperative spin transitions in Hofmann-like clathrates with enhanced loading capacity

2014

Structural, magnetic, calorimetric and Mo¨ssbauer studies of the cooperative spin crossover naphthalene and nitrobenzene clathrates of the novel FeII Hofmann-like porous metal–organic framework {Fe(bpb)[Pt(CN)4]}2Guest are described (bpb = bis(4-pyridyl)butadiyne).

StereochemistryMetals and AlloysOne-StepGeneral ChemistryCatalysisSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsNitrobenzeneCrystallographychemistry.chemical_compoundchemistrySpin crossoverFISICA APLICADAMössbauer spectroscopyMaterials ChemistryCeramics and CompositesSpin (physics)NaphthaleneChem. Commun.
researchProduct

A study of the thermal decomposition of amorphous bimetallic CDTA complexes

1989

Abstract The study of the thermal behaviour of a family of bimetallic amorphous MM'(CDTA)· n H 2 O complexes has been performed using TG and DTA. The complexes decompose in three steps: dehydration, ligand pyrolysis and inorganic residue evoluation.

Residue (chemistry)ChemistryInorganic chemistryThermal decompositionmedicineDehydrationPhysical and Theoretical ChemistryCondensed Matter Physicsmedicine.diseaseInstrumentationBimetallic stripPyrolysisAmorphous solidThermochimica Acta
researchProduct

Switchable Spin-Crossover Hofmann-Type 3D Coordination Polymers Based on Tri- and Tetratopic Ligands

2018

[EN] Fe-II spin-crossover (SCO) coordination polymers of the Hofmann type have become an archetypal class of responsive materials. Almost invariably, the construction of their architectures has been based on the use of monotopic and linear ditopic pyridine like ligands. In the search for new Hofmann-type architectures with SCO properties, here we analyze the possibilities of bridging ligands with higher connectivity degree. More precisely, the synthesis and structure of {Fe-II(L-N3)[M-I(CN)(2)](2)}center dot(Guest) (Guest = nitro-benzene, benzonitrile, o-dichlorobenzene; M-I = Ag, Au) and {Fe-II(L-N4)[Ag-2(CN)(3)][Ag(CN)(2)]}center dot H2O are described, where L-N3 and L-N4 are the tritopic…

chemistry.chemical_classification010405 organic chemistryPolymerType (model theory)010402 general chemistry01 natural sciences0104 chemical sciencesInorganic ChemistryNitrobenzenechemistry.chemical_compoundBenzonitrileCrystallographychemistrySpin crossoverFISICA APLICADAPhysical and Theoretical ChemistryBenzene
researchProduct

Spin Crossover in a Series of Non-Hofmann-Type Fe(II) Coordination Polymers Based on [Hg(SeCN)3]− or [Hg(SeCN)4]2– Building Blocks

2021

Self-assembly of [Hg(SeCN)4]2- tetrahedral building blocks, iron(II) ions, and a series of bis-monodentate pyridyl-type bridging ligands has afforded the new heterobimetallic HgII-FeII coordination polymers {Fe[Hg(SeCN)3]2(4,4'-bipy)2}n (1), {Fe[Hg(SeCN)4](tvp)}n (2), {Fe[Hg(SeCN)3]2(4,4'-azpy)2}n (3), {Fe[Hg(SeCN)4](4,4'-azpy)(MeOH)}n (4), {Fe[Hg(SeCN)4](3,3'-bipy)}n (5) and {Fe[Hg(SeCN)4](3,3'-azpy)}n (6) (4,4-bipy = 4,4'-bipyridine, tvp = trans-1,2-bis(4-pyridyl)ethylene, 4,4'-azpy = 4,4'-azobispyridine, 3,3-bipy = 3,3'-bipyridine, 3,3'-azpy = 3,3'-azobispyridine). Single-crystal X-ray analyses show that compounds 1 and 3 display a two-dimensional robust sheet structure made up of infini…

Inorganic Chemistrychemistry.chemical_classificationBipyridinechemistry.chemical_compoundCrystallographyEthylenechemistrySpin crossoverLigandSheet structurePolymerPhysical and Theoretical ChemistryType (model theory)Inorganic Chemistry
researchProduct

Synthesis, crystal structures, and solid state quadratic nonlinear optical properties of a series of stilbazolium cations combined with gold cyanide …

2011

Three salts built up from (E)-4′-(dimethylamino)-stilbazolium (DMAS)H+, (E)-4′-(diethylamino)-stilbazolium (DEAS)H+, (E)-4′-{2-(methoxymethyl) pyrrolidinyl}-stilbazolium (MPS)H+, and gold cyanide as a counter-ion, are reported. The crystal structures have been solved for (DEAS)H+ Au(CN)2− (Cc space group), and for (MPS)H+ Au(CN)2− (P1 space group). The semi-empirical (ZINDO) calculated static hyperpolarizability (β0) of (MPS)H+ is equal to 147 × 10−30 cm5esu−1, in solid state, which is 25% higher than that of the cation of the well known (E)-4′-(dimethylamino)-methylstilbazolium tosylate (DAST). (MPS)H+ Au(CN)2− exhibits a unique crystal structure in which the cations are perfectly aligned.…

chemistry.chemical_classificationSeries (mathematics)Gold cyanidationChemistrySolid-stateHyperpolarizabilityGeneral ChemistryCrystal structureNonlinear opticalCrystallographyComputational chemistryMaterials ChemistryZINDOCounterionJournal of Materials Chemistry
researchProduct

Bidirectional Chemo-Switching of Spin State in a Microporous Framework

2009

The ins and outs of spin: Using the microporous coordination polymer {Fe(pz)[Pt(CN)(4)]} (1, pz=pyrazine), incorporating spin-crossover subunits, two-directional magnetic chemo-switching is achieved at room temperature. In situ magnetic measurements following guest vapor injection show that most guest molecules transform 1 from the low-spin (LS) state to the high-spin (HS) state, whereas CS(2) uniquely causes the reverse HS-to-LS transition.

chemo-switchingSpin statesPyrazinemicroporous materialsCoordination polymerGeneral ChemistryMicroporous materialCatalysiscoordination polymerschemistry.chemical_compoundCrystallographyspin crossoverchemistrySpin crossoverMoleculeMetal-organic frameworkSpin (physics)metal-organic frameworksAngewandte Chemie International Edition
researchProduct

[CoII(4-terpyridone)2]X2: a novel cobalt(II) spin crossover system [4-terpyridone = 2,6-bis(2-pyridyl)-4(1H)-pyridone].

2001

[EN] The cationic complex [Co(4-terpyridone)(2)](2+) where 4-terpyridone is the terpy-like ligand 2,6-bis(2-pyridyl)-4-(1H)-pyridone has been synthesized. High-spin and different spin crossover behaviors have been observed in the solid state depending on the counterion SO42-, Cl-, or ClO4-. The room temperature crystal structure of the spin crossover compound [Co(4-terpyridone)(2)](ClO4)(2).H2O is described.

Inorganic ChemistrychemistrySpin crossoverLigandFISICA APLICADACationic polymerizationchemistry.chemical_elementPhysical and Theoretical ChemistryCobaltMedicinal chemistryInorganic chemistry
researchProduct

Heterobimetallic MOFs containing tetrathiocyanometallate building blocks: Pressure-induced spin crossover in the porous {Fe II(pz)[Pd II(SCN) 4]} 3D …

2012

Here we describe the synthesis, structure, and magnetic properties of two related coordination polymers made up of self-assembling Fe(II) ions, pyrazine (pz), and the tetrathiocyanopalladate anion. Compound {Fe(MeOH) 2[Pd(SCN) 4]}·pz (1a) is a two-dimensional coordination polymer where the Fe(II) ions are equatorially coordinated by the nitrogen atoms of four [Pd(SCN) 4] 2- anions, each of which connects four Fe(II) ions, forming corrugated layers {Fe[Pd(SCN) 4]} ∞. The coordination sphere of Fe(II) is completed by the oxygen atoms of two CH 3OH molecules. The layers stack one on top of each other in such a way that the included pz molecule establishes strong hydrogen bonds with the coordin…

Coordination spherePyrazineCoordination polymerHydrogen bondLigandInorganic chemistryInorganic Chemistrychemistry.chemical_compoundCrystallographychemistrySpin crossoverMoleculePhysical and Theoretical ChemistryThermal analysisInorganic Chemistry
researchProduct

Synergetic effect of host-guest chemistry and spin crossover in 3D Hofmann-like metal-organic frameworks [Fe(bpac)M(CN)4] (M=Pt, Pd, Ni).

2012

The synthesis and characterization of a series of three-dimensional (3D) Hofmann-like clathrate porous metal-organic framework (MOF) materials [Fe(bpac)M(CN) 4] (M=Pt, Pd, and Ni; bpac=bis(4-pyridyl)acetylene) that exhibit spin-crossover behavior is reported. The rigid bpac ligand is longer than the previously used azopyridine and pyrazine and has been selected with the aim to improve both the spin-crossover properties and the porosity of the corresponding porous coordination polymers (PCPs). The 3D network is composed of successive {Fe[M(CN) 4]} n planar layers bridged by the bis-monodentate bpac ligand linked in the apical positions of the iron center. The large void between the layers, w…

Pyrazine010405 organic chemistryChemistryStereochemistrymicroporous materialsTransition temperatureOrganic Chemistryhost–guest systemsStackingSpin transitionGeneral Chemistry010402 general chemistry01 natural sciencesCatalysis0104 chemical scienceschemistry.chemical_compoundCrystallographymetal–organic frameworksspin crossoverSpin crossoveradsorptionMoleculeMetal-organic framework[CHIM.COOR]Chemical Sciences/Coordination chemistryHost–guest chemistryChemistry (Weinheim an der Bergstrasse, Germany)
researchProduct

Crystal structure, magnetic properties and Mössbauer studies of [Fe(qsal)2][Ni(dmit)2]

2007

Abstract A new compound of formula [Fe(qsal)2][Ni(dmit)2] (1) has been synthesised, structurally and magnetically characterised (qsalH = N-(8-quinolyl)salicylaldimine, dmit2− = 1,3-dithiol-2-thione-4,5-dithiolato). Its structural features and its magnetic behaviour were compared with those of [Fe(qsal)2]-based complexes, and more particularly [Fe(qsal)2][Ni(dmit)2] · 2CH3CN.

Inorganic ChemistryCrystallographySpin crossoverChemistryMössbauer spectroscopyMaterials ChemistryCrystal structurePhysical and Theoretical ChemistryInorganica Chimica Acta
researchProduct

Coordination nano-space as stage of hydrogen ortho–para conversion

2015

The ability to design and control properties of nano-sized space in porous coordination polymers (PCPs) would provide us with an ideal stage for fascinating physical and chemical phenomena. We found an interconversion of nuclear-spin isomers for hydrogen molecule H 2 adsorbed in a Hofmann-type PCP, {Fe(pz)[Pd(CN) 4 ]} (pz=pyrazine), by the temperature dependence of Raman spectra. The ortho (o)–para (p) conversion process of H 2 is forbidden for an isolated molecule. The charge density study using synchrotron radiation X-ray diffraction reveals the electric field generated in coordination nano-space. The present results corroborate similar findings observed on different systems and confirm …

196Materials scienceHydrogenPyrazine1002chemistry.chemical_elementCatalysissymbols.namesakechemistry.chemical_compoundhydrogen storage porous coordination polymerElectric fieldNano-Moleculelcsh:ScienceMultidisciplinaryCharge density39hydrogen storage porous coordination polymer; structure of absorbed H-2; ortho-para conversion56ChemistrychemistrysymbolsPhysical chemistrylcsh:Qstructure of absorbed H2ortho–para conversionRaman spectroscopyResearch ArticleRoyal Society Open Science
researchProduct

Pulsed-laser switching in the bistability domain of a cooperative spin crossover compound: a critical study through calorimetry

2015

The photoswitching from the low spin (LS) to high spin (HS) state and the reverse process in the bistability domain of spin crossover (SCO) compounds is a promising function to be used in molecular electronic devices, and evidenced mainly through spectroscopy. The phenomenon, and in particular its mechanism, is however still under debate since some controversial experimental results have been reported. Here we present a calorimetric experimental study of the photoswitching of the [Fe(pyrazine)Pt(CN)4] SCO material by a nanosecond-pulsed green laser. Our results confirm that the single laser pulse of varying energies results in significant LS to HS transformations and show that calorimetry p…

Materials scienceBistabilityPyrazinePulse (signal processing)CalorimetryLaserMolecular physicsSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialslaw.inventionchemistry.chemical_compoundGeneral EnergychemistrySpin crossoverlawPhysical and Theoretical ChemistrySpectroscopySpin-½
researchProduct

From six-coordinate to eight-coordinate iron(ii) complexes with pyridyltriazolo-pyridine frameworks

2016

A new octacoordinated Fe(II) compound, [FeII(LN4)2](BPh4)2·3CH2Cl2, as an example of the scarce FeN8 systems, has been isolated with a tetradentate triazolopyridine-based ligand from a solution containing the related hexacoordinated [FeII(LN3)2]2+ complex, with LN3 = pyridyltriazolo-pyridyl-bromopyrimidine and LN4 = bis(pyridyltriazolo-pyridine).

010405 organic chemistryLigandChemistryStereochemistryGeneral Chemistry010402 general chemistryCondensed Matter Physics01 natural sciencesMedicinal chemistry0104 chemical scienceschemistry.chemical_compoundFISICA APLICADAPyridineGeneral Materials ScienceTriazolopyridineCrystEngComm
researchProduct

Thermal-,Pressure-, and Light-Induced Spin Transition in Novel Cyanide-Bridged FeII-AgI Bimetallic Compounds with Three-Dimensional Interpenetrating …

2002

[EN] Low-spin, high-spin and spin-transition behaviours have been observed for the doubly interpenetrating three-dimensional bimetallic compounds {Fe-II(pz)[Ag(CN)(2)](2)}.pz (pz= pyrazine), {Fe-II(4,4'-bipy)(2)[Ag(CN)(2)](2)} (4,4'-bipy-4,4'-bipyridine), and {Fe-II-(bpe)(2)[Ag(CN)(2)](2)} (bpe = bispyridylethylene), respectively. The single crystals of the bpe derivative undergo a spin transition with a large hysteresis loop at about 95 K. After several warming and cooling cycles, the single crystals become a microcrystalline powder with 50% spin transition. Influence of pressure- as well as light-induced excited spin-state trapping (LIESST) on the thermal 50% spin transition of the microc…

CyanidesSpin statesPyrazineChemistryIronOrganic ChemistrySpin transitionGeneral ChemistrySpin crossoverCooperative phenomenaInterpenetrating 3D structuresCatalysisLIESSTCrystallographychemistry.chemical_compoundBipyridineNuclear magnetic resonanceMicrocrystallineSpin crossoverFISICA APLICADABimetallic strip
researchProduct

Cooperative Spin Transition in the Two-Dimensional Coordination Polymer [Fe(4,4′-bipyridine)2(NCX)2]·4CHCl3 (X = S, Se)

2011

Two new isostructural two-dimensional (2D) coordination polymers exhibiting spin crossover (SCO) behavior of formulation [Fe(4,4'-bipy)(2)(NCX)(2)]·4CHCl(3) (4,4'-bipy = 4,4'-bipyridine; X = S [1·4CHCl(3)], Se [2·4CHCl(3)]) have been synthesized and characterized, and both undergo cooperative spin transitions (ST). For 1·4CHCl(3) the ST takes place in two steps with critical temperatures of T(c1)(down) = 143.1 K, T(c2)(down) = 91.2 K, T(c1)(up) = 150.7 K, and T(c2)(up) = 112.2 K. 2·4CHCl(3) displays half ST characterized by T(c)(down) = 161.7 K and T(c)(up) = 168.3 K. The average enthalpy and entropy variations and cooperativity parameters associated with the ST have been estimated to be ΔH…

Coordination polymerEnthalpySpin transitionCooperativity44'-BipyridineInorganic Chemistrychemistry.chemical_compoundCrystallographyBipyridineNuclear magnetic resonancechemistrySpin crossoverPhysical and Theoretical ChemistryIsostructuralInorganic Chemistry
researchProduct

Photo-switching spin pairs—synergy between LIESST effect and magnetic interaction in an iron(ii) binuclear spin-crossover compound

2001

The decrease of the magnetic response under irradiation at very low temperature was interpreted as a new evidence of synergy between magnetic interaction and spin transition in an iron(II) binuclear SC compound. Real Cabezos, Jose Antonio, Jose.A.Real@uv.es

Materials scienceMagneticIronUNESCO::QUÍMICASpin transitionComputer Science::Computational Geometry:QUÍMICA [UNESCO]CatalysisLIESSTSpin crossoverMaterials ChemistryIrradiationBinuclearSpin-½Photo-switchingCondensed matter physicsUNESCO::QUÍMICA::Química inorgánicaMetals and AlloysGeneral ChemistryMagnetic response:QUÍMICA::Química inorgánica [UNESCO]equipment and suppliesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsSynergyCeramics and CompositesLIESSTCondensed Matter::Strongly Correlated ElectronsMagnetic interactionhuman activitiesPhoto-switching ; Synergy ; LIESST ; Magnetic ; Iron ; BinuclearChemical Communications
researchProduct

Electronic Structure Study of Seven-Coordinate First-Row Transition Metal Complexes Derived from 1,10-Diaza-15-crown-5:  A Successful Marriage of The…

2005

A detailed study of the electronic structure of seven-coordinate Mn(II), Co(II), and Ni(II) complexes with the lariat ether N,N'-bis(2-aminobenzyl)-1,10-diaza-15-crown-5 (L(1)) is presented. These complexes represent new examples of structurally characterized seven-coordinate (pentagonal bipyramidal) complexes for the Mn(II), Co(II), and Ni(II) ions. The X-ray crystal structures of the Mn(II) and Co(II) complexes show C(2) symmetries for the [M(L(1))](2+) cations, whereas the structures of the Ni(II) complexes show a more distorted coordination environment. The magnetic properties of the Mn(II) complex display a characteristic Curie law, whereas those of the Co(II) and Ni(II) ions show the …

StereochemistryElectronic structureCrystal structureIonInorganic ChemistryMetalchemistry.chemical_compoundCrystallographyPentagonal bipyramidal molecular geometrychemistryTransition metal15-Crown-5visual_artvisual_art.visual_art_mediumPhysical and Theoretical ChemistryGround stateInorganic Chemistry
researchProduct

Spin crossover in six-coordinate [Fe(L)2(NCX)2] compounds with L = DPQ = 2,3-bis-(2′-pyridyl)-quinoxaline, ABPT = 4-amino-3,5-bis(pyridin-2-yl)-1,2,4…

1998

[EN] The iron(II) compounds of formulae [Fe(DPQ)2(NCS)2]·CO(CH)3)2(DPQ = 2,3-bis-(2¿-pyridyl)-quinoxaline) (1) and [Fe(ABPT)2-(NCX)2] (ABPT = 4-amino-3,5-bis(pyridin-2-yl)-1,2,4-triazole) X = S (2) and Se (3) were synthesized and the crystal structure of 1 determined by X-ray diffraction methods. It crystallizes in the monoclinic system . The structure is made up of discrete [Fe(DPQ)2(NCS)2] units. Each metal atom is in a distorted FeN6 octahedral environment, the Fe¿N bonds ranging from 2.013(8) Å to 2.425(8) Å. Variable-temperature magnetic susceptibility data in the temperature range 290¿4.2 K revealed that 1 is high spin, in contrast to 2 and 3 which show a moderately cooperative high s…

Spin transition124-TriazoleSix-coordinate complexesCrystal structureIron complexesSpin crossoverMagnetic susceptibilityInorganic Chemistrychemistry.chemical_compoundCrystallographyQuinoxalinechemistrySpin crossoverFISICA APLICADACrystal structuresMagnetic propertiesMaterials ChemistryPhysical and Theoretical ChemistrySingle crystalMonoclinic crystal systemInorganica Chimica Acta
researchProduct

Direct monitoring of spin state in dinuclear iron(II) coordination compounds

2001

So far there has been no direct method to determine the spin state of molecules in dinuclear iron(II) compounds. The molecular fractions of high-spin (HS) and low-spin (LS) species have been deduced from magnetic susceptibility and zero-field Mossbauer spectroscopy data irrespective of whether they belong to LS–LS, LS–HS and HS–HS pairs. However, the distinction of pairs becomes possible if Mossbauer measurements are carried out in an external magnetic field. The proposed method opens new possibilities in the study of spin crossover phenomena in dinuclear compounds.

chemistry.chemical_classificationSpin statesChemistryDirect methodGeneral Physics and AstronomyMagnetic susceptibilityCoordination complexMagnetic fieldCrystallographyNuclear magnetic resonanceSpin crossoverMössbauer spectroscopyMoleculeCondensed Matter::Strongly Correlated ElectronsPhysical and Theoretical ChemistryChemical Physics Letters
researchProduct

Homoleptic iron(II) complexes with the ionogenic ligand 6,6′-Bis(1H-tetrazol-5-yl)-2,2′-bipyridine: spin crossover behavior in a singular 2D spin cro…

2015

Deprotonation of the ionogenic tetradentate ligand 6,6′-bis(1H-tetrazol-5-yl)-2,2′-bipyridine [H2bipy(ttr)2] in the presence of FeII in solution has afforded an anionic mononuclear complex and a neutral two-dimensional coordination polymer formulated as, respectively, NEt3H{Fe[bipy(ttr)2][Hbipy(ttr)2]}·3MeOH (1) and {Fe[bipy(ttr)2]}n (2). The anions [Hbipy(ttr)2]− and [bipy(ttr)2]2– embrace the FeII centers defining discrete molecular units 1 with the FeII ion lying in a distorted bisdisphenoid dodecahedron, a rare example of octacoordination in the coordination environment of this cation. The magnetic behavior of 1 shows that the FeII is high-spin, and its Mössbauer spectrum is characteriz…

DEVICESCoordination polymerStereochemistryPRESSURE010402 general chemistry01 natural sciences22'-BipyridineInorganic ChemistrySINGLE MOLECULESchemistry.chemical_compoundDeprotonationSpin crossoverSYSTEMS[CHIM.COOR]Chemical Sciences/Coordination chemistryPhysical and Theoretical ChemistryHomolepticSYNERGYCRYSTAL010405 organic chemistryLigandCOMPOUNDQuadrupole splittingSTATE3. Good health0104 chemical sciencesCrystallographychemistryOctahedronFISICA APLICADAMOSSBAUERPHASE-TRANSITIONS
researchProduct

Spin crossover star-shaped metallomesogens of iron(II).

2014

Three new types of spin crossover (SCO) metallomesogens of Fe-II based on symmetric tripod ligands and their magnetic and structural properties are reported here. These were obtained by condensation of tris(2-aminoethyl)-amin (tren) with the aldehyde derived from 3-alkoxy-6-methylpyridine (mpyN, N (number of carbon atoms in n-alkyl chains) = 8, 18), 1-alkyl-1H-imidazole (imN, N = 4, 16, 18, 20, 22), or 1-alkyl-1H-benzimidazole (bimN, N = 6, 14, 16, 18, 20). A complex derived from 1-octadecyl-1H-naphtho[2,3-d]imidazole (nim18) retains the high spin state at any temperature. Single crystals of the short-chain complexes were investigated by a combination of X-ray crystallography, magnetic meas…

Phase transitionTHERMAL-BEHAVIORSpin statesMOSSBAUER-SPECTROSCOPYLIQUID-CRYSTALLINE PROPERTIESCalorimetryCOMPLEX-COMPOUNDSSERIESMAGNETIC-SUSCEPTIBILITYMagnetic susceptibilityPOLYMORPHISMInorganic ChemistryCrystalchemistry.chemical_compoundCrystallographyROOM-TEMPERATUREchemistrySpin crossoverFISICA APLICADAMössbauer spectroscopyPHASE-TRANSITIONImidazolePhysical and Theoretical ChemistryTHERMAL-BEHAVIOR; SYSTEMSYSTEMInorganic chemistry
researchProduct

Nanoporosity, Inclusion Chemistry, and Spin Crossover in Orthogonally Interlocked Two-Dimensional Metal-Organic Frameworks

2015

[Fe(tvp)(2)(NCS)(2)] (1) (tvp=trans-(4,4-vinylenedipyridine)) consists of two independent perpendicular stacks of mutually interpenetrated two-dimensional grids. This uncommon supramolecular conformation defines square-sectional nanochannels (diagonal approximate to 2.2nm) in which inclusion molecules are located. The guest-loaded framework 1@guest displays complete thermal spin-crossover (SCO) behavior with the characteristic temperature T-1/2 dependent on the guest molecule, whereas the guest-free species 1 is paramagnetic whatever the temperature. For the benzene-guest derivatives, the characteristic SCO temperature T-1/2 decreases as the Hammet sigma(p) parameter increases. In general, …

StereochemistryIronOrganic ChemistrySupramolecular chemistryInclusion compoundsInterpenetrationGeneral ChemistryMetal-organic frameworksSpin crossoverCatalysischemistry.chemical_compoundParamagnetismCrystallographyBenzonitrilechemistrySpin crossoverFISICA APLICADAPerpendicularMoleculeMetal-organic frameworkAcetonitrileChemistry - A European Journal
researchProduct

Coexistence of spin-crossover and antiferromagnetic coupling phenomena in the novel dinuclear Fe(II) complex [Fe(dpa)(NCS)2]2bpym

2003

Abstract The iron(II) spin crossover dinuclear compound [Fe(dpa)(NCS) 2 ] 2 bpym where dpa = 2,2 ′ -dipyridylamine and bpym = 2,2 ′ -bipyrimidine has been synthesized and characterized. Variable-temperature magnetic susceptibility and 57 Fe Mossbauer spectroscopy data provide evidence for a rather complete and continuous S=2 ( HS )↔S=0 (LS) spin-crossover behavior taking place in the temperature range 400–50 K (T 1/2 =245 K ) without the presence of a plateau at 50% of conversion. The absence of such plateau, which is characteristic of all dinuclear compounds so far studied, is interpreted in terms of synergetic effect between intramolecular and intermolecular interactions.

CrystallographyNuclear magnetic resonanceChemistrySpin crossoverIntramolecular forceMössbauer spectroscopyIntermolecular forceGeneral Physics and AstronomyPhysical and Theoretical ChemistryAtmospheric temperature rangePlateau (mathematics)Magnetic susceptibilityAntiferromagnetic couplingChemical Physics Letters
researchProduct

Crystalline-state reaction with allosteric effect in spin-crossover, interpenetrated networks with magnetic and optical bistability.

2003

A net change: A fully reversible ligand substitution involving coordination/ uncoordination of gaseous water and pyrimidine induces the repetitive allosteric transformation of three interpenetrated nets into a single three-dimensional net. The transformation does not affect the crystallinity of the sample but alters significantly the spin-crossover transition; the compound shows magnetic and chromatic bistability (see picture).

Allosteric effectSpin crossoverChemical physicsChemistryNanotechnologyGeneral ChemistryState (functional analysis)sense organsGeneral MedicineCatalysisOptical bistabilityAngewandte Chemie (International ed. in English)
researchProduct

Meltable Spin Transition Molecular Materials with Tunable Tc and Hysteresis Loop Width.

2015

Herein, we report a way to achieve abrupt high-spin to low-spin transition with controllable transition temperature and hysteresis width, relying not on solid-state cooperative interactions, but utilizing coherency between phase and spin transitions in neutral FeII meltable complexes

Phase transitionThermochromismCondensed matter physicsSpin transitionsMagnetismChemistryTransition temperatureSpin transitionMagnetismGeneral ChemistryCatalysisHysteresisNuclear magnetic resonancePhase transitionsPhase (matter)FISICA APLICADACondensed Matter::Strongly Correlated ElectronsSoft matterSoft matterSpin-½Angewandte Chemie (International ed. in English)
researchProduct

Control of the spin state by charge and ligand substitution: two-step spin crossover behaviour in a novel neutral iron(II) complex

2014

The influence of the charge and steric hindrance on the spin state of a series of four monomeric Fe-II complexes derived from the tridentate tigands 2-(1H-benzoimidazol-2-yl)-1,10-phenanthroline (Hphenbi) and 2-(1H-benzoimidazol-2-yl-9-methyl-1,10-phenanthroline (Hmphenbi) and their deprotonated forms (phenbi(-), mphenbi(-)) are investigated. The crystal structure and magnetic properties show that [Fe(Hphenbi)(2)](BF4)(2)center dot 1.5C(6)H(5)NO(2)center dot H2O (1) and its neutral form [Fe(phenbi)(2)]center dot 2CHCl(3)center dot H2O (2) are low-spin complexes at 400 K due to the strong ligand field imparted by the terpyridine-like tigand. In contrast, the steric hindrance induced by the m…

Ligand field theorySteric effectsSpin statesChemistryStereochemistryLigandHydrostatic pressureCrystal structureInorganic ChemistrySpin crossoversCrystallographyDeprotonationSpin crossoverFISICA APLICADALigand substitutionSpin stateIron complex
researchProduct

Countercomplementarity and Strong Ferromagnetic Coupling in a Linear Mixed μ-Acetato, μ-Hydroxo Trinuclear Copper(II) Complex. Synthesis, Structure, …

2001

The structural and magnetic data of the trinuclear compound [Cu3(L)2(CH3COO)2(OH)2(dmf)2] (HL = N-(2-methylpyridyl)toluensulfonylamide) are reported. The compound crystallizes in the monoclinic system, space group P2(1)/n (no. 14), with a = 11.6482(6) A, b = 13.5772(6) A, c = 13.5306(7) A, alpha = 90 degrees, beta = 92.859(5) degrees, gamma = 90 degrees, and Z = 2. The three copper atoms form an exact linear arrangement. Neighboring coppers are connected by a hydroxo bridge and a bidentate syn-syn carboxylato group. The coordination spheres of the terminal copper atoms are square pyramidal with a dmf molecule as the apical ligand. The central copper has a regular square planar geometry. The…

Denticitychemistry.chemical_elementDihedral angleCopperSquare pyramidal molecular geometrylaw.inventionInorganic ChemistryCrystallographychemistrylawMoleculeMoietyPhysical and Theoretical ChemistryElectron paramagnetic resonanceMonoclinic crystal systemInorganic Chemistry
researchProduct

Pressure Effect Studies on the 3D Spin Crossover System: {Fe(3CN-py)2[M(CN)2]2}·nH2O (n < 2/3, M = Ag(I), Au(I))

2007

[EN] Pressure effect investigations on the magnetic behaviour of the 3D SCO polymers {Fe(3CN-py)2[Ag(CN)2]2} · 2/3H2O (1) and {Fe(3CN-py)2[Au(CN)2]2} · 2/3H2O (2) have been carried out in the range of 105 Pa to 0.7 GPa. Despite both compounds are isostructural their magnetic behaviour under applied hydrostatic pressures is very different. Strong nonlinearity in the Tc(P) vs. P plot has been observed for compound 1 a fact which contrasts with the almost linear dependence observed for each spin transition in 2. However, both compounds are extremely sensitive to the application of pressure as well as the Tc(P) vs. P plots denote.

chemistry.chemical_classificationCrystallographychemistryCondensed matter physicsSpin crossoverFISICA APLICADASpin transitionGeneral Physics and AstronomyPolymerPhysical and Theoretical ChemistryIsostructural
researchProduct

Synthesis and Characterisation of a New Series of Bistable Iron(II) Spin-Crossover 2D Metal-Organic Frameworks

2009

Twelve coordination polymers with formula {Fe(3-Xpy)(2)[M(II)(CN)(4)]} (M(II): Ni, Pd, Pt; X: F, Cl, Br, I; py: pyridine) have been synthesised, and their crystal structures have been determined by single-crystal or powder X-ray analysis. All of the fluoro and iodo compounds, as well as the chloro derivative in which M(II) is Pt, crystallise in the monoclinic C2/m space group, whereas the rest of the chloro and all of the bromo derivatives crystallise in the orthorhombic Pnc2 space group. In all cases, the iron(II) atom resides in a pseudo-octahedral [FeN(6)] coordination core, with similar bond lengths and angles in the various derivatives. The major difference between the two kinds of str…

ChemistryOrganic ChemistryInorganic chemistrySpin transitionGeneral ChemistryCrystal structureCatalysisBond lengthCrystallographychemistry.chemical_compoundSpin crossoverPyridineOrthorhombic crystal systemMetal-organic frameworkMonoclinic crystal systemChemistry - A European Journal
researchProduct

Polymorphism and “reverse” spin transition in the spin crossover system [Co(4-terpyridone)2](CF3SO3)2·1H2O

2009

[EN] Compound [Co(4-terpyridone)(2)](CF3SO3)(2)center dot 1H(2)O, where 4-terpyridone is 2,6-bis(2-pyridyl)-4(1H)-pyridone, forms two polymorphs. Polymorph 1 displays a continuous spin conversion in the temperature region 300-120 K while polymorph 2 shows, on cooling, the onset of a continuous high-spin (HS) to low-spin (LS) conversion interrupted by an abrupt "reverse'' spin transition in the temperature region 217-203 K. The formed unstable HS intermediate phase (IP) undergoes a strong cooperative "normal'' spin transition characterised by a hysteresis loop 33 K wide. The structural data give support for a crystallographic phase transition, which takes place concomitantly with the "revers…

CrystallographyPhase transitionSpin statesPolymorphism (materials science)Spin crossoverChemistryFISICA APLICADAMaterials ChemistrySpin transitionGeneral ChemistryCatalysisNew Journal of Chemistry
researchProduct

Guest Modulation of Spin-Crossover Transition Temperature in a Porous Iron(II) Metal Organic Framework: Experimental and Periodic DFT Studies

2014

The synthesis, structure, and magnetic properties of three clathrate derivatives of the spin-crossover porous coordination polymer {Fe(pyrazine)[Pt(CN)(4)]} (1) with five-membered aromatic molecules furan, pyrrole, and thiophene is reported. The three derivatives have a cooperative spin-crossover transition with hysteresis loops 14-29 K wide and average critical temperatures T-c=201 K (1.fur), 167 K (1.pyr), and 114.6 K (1.thio) well below that of the parent compound 1 (T-c=295 K), confirming stabilization of the HS state. The transition is complete and takes place in two steps for 1.fur, while 1.pyr and 1.thio show 50% spin transition. For 1.fur the transformation between the HS and IS (mi…

Phase transitionPyrazineMetal–organic frameworksTransition temperatureOrganic ChemistrySpin transitionSpace groupGeneral ChemistryCatalysisSpin-crossover compoundsCrystallographychemistry.chemical_compoundTetragonal crystal systemDensity functional calculationsHofmann clathrateschemistryComputational chemistrySpin crossoverFISICA APLICADAMagnetic propertiesOrthorhombic crystal system
researchProduct

Cover Feature: Cyanido‐Bridged Fe II –M I Dimetallic Hofmann‐Like Spin‐Crossover Coordination Polymers Based on 2,6‐Naphthyridine (Eur. J. Inorg. Che…

2018

Inorganic Chemistrychemistry.chemical_classificationCrystallographyFeature (computer vision)ChemistrySpin crossoverCover (algebra)PolymerEuropean Journal of Inorganic Chemistry
researchProduct

Variable Cooperative Interactions in the Pressure and Thermally Induced Multistep Spin Transition in a Two-Dimensional Iron(II) Coordination Polymer

2020

Two types of experiments conducted to investigate the effect of pressure on the spin crossover (SCO) properties of the 2D Fe(II) coordination polymer formulated {Fe[bipy(ttr)2]}n are reported, namely, (1) magnetic measurements performed at variable temperature and at fixed pressure and (2) visible spectroscopy at variable pressure and fixed temperature. The magnetic experiments carried out under a hydrostatic pressure constraint of 0.04, 0.08, and 0.8 GPa reveal a two-step spin transition behavior. The characteristic critical temperatures of the spin transition are shifted upward in temperature as pressure increases. The slope of the straight-line of the Tc vs P plot, dTc/dP, is 775 K/GPa a…

010405 organic chemistryCoordination polymerHydrostatic pressureSpin transitionElastic energyThermodynamicsFlory–Huggins solution theory010402 general chemistry01 natural sciences0104 chemical sciencesInorganic Chemistrychemistry.chemical_compoundUltraviolet visible spectroscopychemistrySpin crossoverLattice (order)Physical and Theoretical ChemistryInorganic Chemistry
researchProduct

Photomagnetism of a Series of Dinuclear Iron(II) Complexes

2009

International audience; The photomagnetic properties of a series of [{Fe(NCS)(py-X)}2(bpypz)2] (NCS=thiocyanate, py=pyridine, X=4-Mepy, py, 3-Mepy, 3-Clpy and 3-Brpy, and bpypz=3,5-bis(pyridine-2-yl)pyazolate) binuclear complexes are close to the antiferromagnetic response of [{Fe(NCS)(3,5-dmpy)}3(bpypz)2] (3,5-dmpy=3,5-dimethylpyrazine), which is characterised by two iron(II) metal ions in a high-spin (HS) electronic configuration . This paper describes the photomagnetic properties of a series of binuclear iron(II) complexes belonging to the [{Fe(NCS)(py-X)}2(bpypz)2] family (NCS=thiocyanate; py=pyridine; bpypz=3,5-bis(pyridine-2-yl)pyrazolate; and py-X=4-Mepy (1), py (3), 3-Mepy (4), 3-Cl…

ThiocyanateStereochemistryOrganic ChemistryHydrostatic pressureSpin transitionIron(II)[CHIM.MATE]Chemical Sciences/Material chemistry02 engineering and technologyGeneral ChemistrySpin crossover010402 general chemistry021001 nanoscience & nanotechnologyPhotomagnetism01 natural sciencesCatalysisLIESST0104 chemical scienceschemistry.chemical_compoundCrystallographychemistrySpin crossoverPyridineAntiferromagnetism0210 nano-technologyPhotomagnetismChemistry - A European Journal
researchProduct

[Fe(sal2-trien)][Ni(dmit)2]: towards switchable spin crossover molecular conductors

2004

A cooperative spin transition behaviour with a wide hysteresis loop (30 K) around 240 K has been observed, for the first time, in a salt based on the redox active [Ni(dmit)2]¯, anion and the [Fe(sal2-trien)]+ spin crossover cation. Real Cabezos, Jose Antonio, Jose.A.Real@uv.es

UNESCO::QUÍMICASpin transitionSalt (chemistry)Mineralogy:QUÍMICA [UNESCO]Fe(sal2-trien)][Ni(dmit)2CatalysisIonSpin crossoverMaterials ChemistryRedox activeElectrical conductorchemistry.chemical_classificationMolecular conductorsUNESCO::QUÍMICA::Química inorgánicaMolecular conductors ; Spin transition ; Salt based ; Fe(sal2-trien)][Ni(dmit)2Metals and AlloysSpin transitionSalt basedGeneral Chemistry:QUÍMICA::Química inorgánica [UNESCO]Surfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsCrystallographychemistryCeramics and CompositesChemical Communications
researchProduct

Synthesis, crystal structure and magnetic properties of the spin crossover system [Fe(pq)3]2+

2008

Abstract Three new compounds formulated (ClO4)2[Fe(pq)3] (1), (BF4)2[Fe(pq)3] · EtOH (2) and {(ClO4)[MnCr(C2O4)3][Fe(pq)2(H2O)2]} (3), where pq is 2,2′-pyridylquinoline, have been synthesised and characterised. Despite the different crystal packing exhibited by 1 and 2, the cationic species [Fe(pq)3]2+ are structurally quite similar. At 293 K, the Fe–N bond lengths are characteristic of the iron(II) in the high-spin state. In contrast to 1, 2 undergoes a continuous spin transition. Indeed, at 95 K its structure experiences a noticeable change in the Fe–N bonds and angles, i.e. the Fe–N bonds shorten by 0.194 A on the average. The magnetic behaviour confirms that 1 is fully high-spin in the …

Inorganic ChemistryBond lengthCrystallographyFerromagnetismChemistrySpin crossoverEnthalpyMaterials ChemistrySpin transitionCrystal structurePhysical and Theoretical ChemistryAtmospheric temperature rangeFlory–Huggins solution theoryInorganica Chimica Acta
researchProduct

Thermal and pressure-induced spin crossover in a novel three-dimensional Hoffman-like clathrate complex

2011

The synthesis and crystal structure of the interpenetrated metal–organic framework material Fe(bpac)2[Ag(CN)2]2 (bpac = 4,4′-bis(pyridyl)acetylene) are reported along with the characterization of its spin crossover properties by variable temperature magnetometry and Mossbauer spectroscopy. The complex presents an incomplete stepped spin transition as a function of temperature that is modified upon successive thermal cycling. The pressure-induced transition has also been investigated by means of high pressure Raman spectroscopy using a diamond anvil cell. The results show that it is possible to reach the thermally-inaccessible fully low spin state at room temperature by applying hydrostatic …

Spin statesCondensed matter physicsChemistryHydrostatic pressureSpin transitionGeneral ChemistryTemperature cyclingCrystal structureCatalysissymbols.namesakeSpin crossoverMössbauer spectroscopyMaterials ChemistrysymbolsPhysical chemistryRaman spectroscopyNew Journal of Chemistry
researchProduct

[Fe III (bztpen)(OCH 3 )](PF 6 ) 2 : Stable Methoxide–Iron(III) Complex Exhibiting Spin Crossover Behavior in the Solid State

2010

Complex [Fe III (bztpen)(OCH 3 )](PF 6 ) 2 (1) crystallizes as the major yellow-brown product from spontaneous oxidation of its corresponding iron(II) counterpart in methanol solution. Magnetic measurements and EPR spectra demonstrate that 1 undergoes a poorly cooperative 6 A 1 ↔ 2 T 2 spin conversion in the temperature range 300-50 K, with characteristic thermodynamic parameters ΔH = 6.15 kJ mol -1 , ΔS = 39.88 J K -1 mol -1 , and T 1/2 = 154 K. The crystal structure of 1 has been investigated at 100 and 293 K.

StereochemistryCrystal structureAtmospheric temperature rangeMethoxideSpectral linelaw.inventionInorganic Chemistrychemistry.chemical_compoundCrystallographychemistrylawSpin crossoverMethanolElectron paramagnetic resonanceSpin (physics)European Journal of Inorganic Chemistry
researchProduct

Cyanido-Bridged FeII-MI Dimetallic Hofmann-Like Spin-Crossover Coordination Polymers Based on 2,6-Naphthyridine

2017

[EN] Two new 3D spin-crossover (SCO) Hofmann-type coordination polymers {Fe(2,6-naphthy)[Ag(CN)2][Ag2(CN)3]} (1; 2,6-naphthy = 2,6-naphthyridine) and {Fe(2,6-naphthy)- [Au(CN)2]2}·0.5PhNO2 (2) were synthesized and characterized. Both derivatives are made up of infinite stacks of {Fe[Ag(CN)2]2- [Ag2(CN)3]}n and {Fe[Au(CN)2]2}n layered grids connected by pillars of 2,6-naphthy ligands coordinated to the axial positions of the FeII centers of alternate layers.

Void (astronomy)SilverStereochemistryIron02 engineering and technology010402 general chemistry01 natural sciencesInorganic ChemistryNitrobenzenechemistry.chemical_compoundN ligandsSpin crossoverMoleculechemistry.chemical_classificationPolymerMetal-organic frameworks021001 nanoscience & nanotechnologySpin crossover0104 chemical sciencesCrystallographychemistryFISICA APLICADAMetal-organic frameworkGold0210 nano-technology
researchProduct

Exploiting Pressure To Induce a "Guest-Blocked" Spin Transition in a Framework Material.

2016

A new functionalized 1,2,4-triazole ligand, 4-[(E)-2-(5-methyl-2-thienyl)vinyl]-1,2,4-triazole (thiome), was prepared to assess the broad applicability of strategically producing multistep spin transitions in two-dimensional Hofmann-type materials of the type [FeIIPd(CN)4(R-1,2,4-trz)2]·nH2O (R-1,2,4-trz = a 4-functionalized 1,2,4-triazole ligand). A variety of structural and magnetic investigations on the resultant framework material [FeIIPd(CN)4(thiome)2]·2H2O (A·2H2O) reveal that a high-spin (HS) to low-spin (LS) transition is inhibited in A·2H2O due to a combination of guest and ligand steric bulk effects. The water molecules can be reversibly removed with retention of the porous host f…

Steric effects010405 organic chemistryLigandChemistryStereochemistryHydrostatic pressureSpin transitionInternal pressure010402 general chemistry01 natural sciences0104 chemical sciencesInorganic ChemistryCrystallographyMoleculePhysical and Theoretical ChemistryPorositySpin-½Inorganic chemistry
researchProduct

A Combined Top-Down/Bottom-Up Approach for the Nanoscale Patterning of Spin-Crossover Coordination Polymers

2007

Molecular spin-crossover complexes of 3d–3d transitionmetal ions have been the focus of many researchers’ work because of their fascinating properties associated with the bistability of their electronic states (high spin (HS) or low spin (LS)). Although the origin of the spin-crossover phenomenon is purely molecular, the macroscopic behavior of these systems in the solid state is strongly determined by the interactions, of mainly elastic origin, between the transition-metal ions. Recently, remarkable progress has been made in the area of spin-crossover complexes with infinite one-, two-, or three-dimensional (1D, 2D, 3D) networks, the so-called coordination polymers. The purpose of this app…

chemistry.chemical_classificationMaterials scienceBistabilityCoordination polymerMechanical EngineeringNanotechnologySubstrate (electronics)PolymerDielectricchemistry.chemical_compoundchemistryMechanics of MaterialsSpin crossoverGeneral Materials ScienceThin filmLithographyAdvanced Materials
researchProduct

{[Hg(SCN)3]2(n-L)}2-: An Efficient Secondary Building Unit for the Synthesis of 2D Iron(II) Spin-Crossover Coordination Polymers

2018

[EN] We report an unprecedented series of two-dimensional (2D) spin-crossover (SCO) heterobimetallic coordination polymers generically formulated as {Fe-II[(He(SCN)(3))(2)](L)(x))}center dot Solv, where x = 2 for L = tvp (trans-(4,4'-vinylenedipyridine)) (1tvp), bpmh ((1E,2E)-1,2-bis(pyridin-4-ylmethylene)hydrazine) (1bpmh center dot nCH(3)OH; n = 0, 1), by eh ( (1E,2E)-1,2-bis (1-(pyridin-4-yl) ethyliden e) hydrazine) (Ibpeh center dot nH(2)O; n = 0, 1) and x = 2.33 for L = 0 0 bpbz (1,4-bis(pyridin-4-yl)benzene) (1bpbz center dot nH(2)O; n = 0, 2/ 3). The results confirm that self-assembly of Fell, [Hg-II(SCN)(4)](2-), and ditopic rodlike bridging ligands L containing 4-pyridyl moieties f…

ChemistryLigandEnthalpySolvation02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesLIESST0104 chemical sciencesInorganic ChemistrySolventchemistry.chemical_compoundCrystallographySpin crossoverFISICA APLICADAMoleculePhysical and Theoretical Chemistry0210 nano-technologyBenzene
researchProduct

Mössbauer investigation of the photoexcited spin states and crystal structure analysis of the spin-crossover dinuclear complex [{Fe(bt)(NCS)(2)}(2)bp…

2006

The crystal structure of the complex [{Fe(bt)(NCS)(2)}(2)bpym] (1) (bt=2,2'-bithiazoline, bpym=2,2'-bipyrimidine) has been solved at 293, 240, 175 and 30 K. At all four temperatures the crystal remains in the P space group with a=8.7601(17), b=9.450(2), c=12.089(3) A, alpha=72.77(2), beta=79.150(19), gamma=66.392(18) degrees , V=873.1(4) Angstrom(3) (data for 293 K structure). The structure consists of centrosymmetric dinuclear units in which each iron(II) atom is coordinated by two NCS(-) ions in the cis position and two nitrogen atoms of the bridging bpym ligand, with the remaining positions occupied by the peripheral bt ligand. The iron atom is in a severely distorted octahedral FeN(6) e…

Spin statesStereochemistryChemistryOrganic ChemistryIntermolecular forceSpin transitionGeneral ChemistryCrystal structureCatalysisLIESSTBond lengthCrystallographySpin crossoverExcited stateChemistry (Weinheim an der Bergstrasse, Germany)
researchProduct

Electrical Voltage Control of the Pressure-Induced Spin Transition at Room Temperature in the Microporous 3D Polymer [Fe(pz)Pt(CN)4]

2019

Fine control and direct monitoring of the spin crossover properties driven by pressure at room temperature are reported for the porous three-dimensional coordination polymer {Fe(pz)[Pt(CN)4]} by us...

chemistry.chemical_classificationMaterials scienceCoordination polymerSpin transitionAnalytical chemistry02 engineering and technologyMicroporous materialPolymer010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialschemistry.chemical_compoundGeneral EnergychemistrySpin crossoverDirect monitoringPhysical and Theoretical Chemistry0210 nano-technologyPorosityVoltageThe Journal of Physical Chemistry C
researchProduct

Polymeric Spin-Crossover Materials

2013

Materials scienceCondensed matter physicsbusiness.industrySpin crossoverEmbedded systembusiness
researchProduct

Two-dimensional assembling of 4,4'-bipyridine and 4,4'-azopyridine bridged iron(II) linear coordination polymers via hydrogen bond

1999

[EN] Novel two-dimensional polymers, [Fe(L-1)(H2O)(2)(NCX)(2)]. L-1 (L-1 =4.4'-bipyridine (bipy)) (1, 2) and [Fe(L-2)(CH3OH)(2)-(NCX)(2)]. L-2 (L-2 =4,4'-azopyridine (azpy)) (3) and X = S (1, 3), Se (2), have been synthesized and characterized by X-ray crystallography. The structures reveal the formation of tranzs-L-bridged [Fe(NCX)(2)(Y)(2)] where Y=H2O, CH3OH linear chains assembled into two-dimensional networks by hydrogen bonds between the uncoordinated ligand L and the coordinated solvent molecules.

chemistry.chemical_classificationHydrogen bondLigandPolymerCrystal structureIron complexes44'-BipyridineInorganic ChemistrySolventCrystallographychemistry.chemical_compoundchemistryFISICA APLICADASelf assemblingCrystal structuresMaterials ChemistryMoleculePhysical and Theoretical ChemistrySelf-assemblingCoordination polymer complexes
researchProduct

Synthesis and crystal structure of the low-spin iron(II) complex [Fe(bpym)3](ClO4)2·1/4H2O (bpym=2,2′-bipyrimidine)

1997

Abstract Single crystals of the mononuclear iron(II) complex of formula [Fe(bpym)3](ClO4)2·1/4H2O (bpym=2,2′-bipyrimidine) have been prepared and characterized crystallographically. The complex is monoclinic, P21/c, a=13.688(5), b=19.391(6), c=11.554(5) A, β=102.22(3)°, V=2997(2) A3, Z=4, R=0.063 and Rw=0.068. The structure analysis reveals a distorted octahedral geometry around the iron atom. The average Fe–N bond length and N–Fe–N bidentate angle are 1.970(5) A and 81.0(1)°, respectively. The value of the Fe–N distance and that of the room temperature magnetic moment are in agreement with its singlet 1A1 ground state.

Inorganic ChemistryBond lengthCrystallographyDenticityMagnetic momentChemistryOctahedral molecular geometryMaterials ChemistrySinglet stateCrystal structurePhysical and Theoretical ChemistryGround stateMonoclinic crystal systemInorganica Chimica Acta
researchProduct

Pressure-induced cooperative spin transition in ironII 2D coordination polymers: room-temperature visible spectroscopic study.

2011

For the 2D coordination polymers [Fe(3-Fpy)(2)M(II)(CN)(4)] (M(II) = Ni, Pd, Pt), the pressure-induced spin crossover behavior has been investigated at 298 K by monitoring the distinct optical properties associated with each spin state. Cooperative first-order spin transition characterized by a piezohysteresis loop ca. 0.1 GPa wide was observed for the three derivatives. Application of the mean field regular solution theory has enabled estimation of the cooperative parameter, Γ(p), and the enthalpy, ΔH(HL)(p), associated with the spin transition for each derivative. These values, found in the intervals 6.8-7.9 and 18.6-20.8 kJ mol(-1), respectively, are consistent with those previously repo…

chemistry.chemical_classificationSpin statesCondensed matter physicsEnthalpySpin transitionElastic energyPolymerSurfaces Coatings and FilmschemistryMean field theorySpin crossoverMaterials ChemistryPhysical chemistryPhysical and Theoretical ChemistrySpin-½The journal of physical chemistry. B
researchProduct

Strukturelle und magnetische Charakterisierung eines neuen, siebenkernigen Hydroxo-verbrückten Kupfer(II)-Clusters mit einem Zentralgerüst aus zwei e…

1994

ChemistryGeneral MedicineAngewandte Chemie
researchProduct

Thermochromic Meltable Materials with Reverse Spin Transition Controlled by Chemical Design

2020

International audience; We report a series of meltable FeII complexes, which, depending on the length of aliphatic chains, display abrupt forward low‐spin to high‐spin transition or unprecedented melting‐triggered reverse high‐spin to low‐spin transition on temperature rise. The reverse spin transition is perfectly reproducible on thermal cycling and the obtained materials are easily processable in the form of thin film owing to their soft‐matter nature. We found that the discovered approach represents a potentially generalizable new avenue to control both the location in temperature and the direction of the spin transition in meltable compounds.

Phase transitionMaterials scienceBistabilitySpin transitionsSpin transition02 engineering and technologyTemperature cycling010402 general chemistry01 natural sciencesCatalysisSpin crossover[CHIM.COOR]Chemical Sciences/Coordination chemistrySoft matterThin filmThermochromismCondensed matter physics010405 organic chemistryReverse spin transitionGeneral MedicineGeneral Chemistry021001 nanoscience & nanotechnologySpin crossover0104 chemical sciencesCondensed Matter::Strongly Correlated ElectronsSoft matter0210 nano-technology
researchProduct

Single-Crystal X-Ray Diffraction Study of Pressure and Temperature-Induced Spin Trapping in a Bistable Iron(II) Hofmann Framework.

2020

High-pressure single-crystal X-ray diffraction has been used to trap both the low-spin (LS) and high-spin (HS) states of the iron(II) Hofmann spin crossover framework, [FeII (pdm)(H2 O)[Ag(CN)2 ]2 ⋅H2 O, under identical experimental conditions, allowing the structural changes arising from the spin-transition to be deconvoluted from previously reported thermal effects.

DiffractionMaterials scienceBistabilitySpin trapping010405 organic chemistryGeneral MedicineGeneral Chemistry010402 general chemistry01 natural sciencesTemperature inducedMolecular physicsCatalysis0104 chemical sciencesSpin crossoverThermalX-ray crystallographyCondensed Matter::Strongly Correlated ElectronsSingle crystalAngewandte Chemie (International ed. in English)
researchProduct

Thermo-, piezo-, photo- and chemo-switchable spin crossover iron(II)-metallocyanate based coordination polymers

2011

Abstract The design of coordination polymers (CPs) with switch and memory functions is an important subject of current interest in the search for new advanced materials with potential applications. Implementation of CPs with electronically labile iron(II) building blocks able to undergo cooperative spin crossover (SCO) behavior is a singular approach to this end. This review provides an up to date survey of a new generation of iron(II)-metallocyanate based spin crossover coordination polymers (SCO-CPs) developed during the last decade. These new solids feature structural diversity, supramolecular isomerism, interpenetrating frameworks, structure flexibility, reversible solid-state chemical …

chemistry.chemical_classificationChemistrySupramolecular chemistryStructural diversityNanotechnologyPolymerAdvanced materialsChemical reactionInorganic ChemistryChemisorptionSpin crossoverMaterials ChemistryOrganic chemistryPhysical and Theoretical ChemistryNanoscopic scaleCoordination Chemistry Reviews
researchProduct

Large Conductance Switching in a Single-Molecule Device through Room Temperature Spin-Dependent Transport

2016

Controlling the spin of electrons in nanoscale electronic devices is one of the most promising topics aiming at developing devices with rapid and high density information storage capabilities. The interface magnetism or spinterface resulting from the interaction between a magnetic molecule and a metal surface, or vice versa, has become a key ingredient in creating nanoscale molecular devices with novel functionalities. Here, we present a single-molecule wire that displays large (>10000%) conductance switching by controlling the spin-dependent transport under ambient conditions (room temperature in a liquid cell). The molecular wire is built by trapping individual spin crossover Fe-II comple…

SpinterfaceMagnetoresistanceMagnetismIronBioengineering02 engineering and technologyLigands010402 general chemistry01 natural sciencesMolecular wireSpin-crossover complexesSpin crossoverNanotechnologyGeneral Materials ScienceDensity functionalsSpin orbit couplingSTM break-junctionCondensed matter physicsNanotecnologiaMagnetoresistanceChemistryMechanical EngineeringTeoria del funcional de densitatConductanceGeneral ChemistrySpin–orbit interaction021001 nanoscience & nanotechnologyCondensed Matter Physics0104 chemical sciencesDensity functional calculationsLligandsSingle-molecule junctionsFerromagnetismChemical physicsElectrode0210 nano-technologyFerroNano Letters
researchProduct

Thermal- and photoinduced spin-state switching in an unprecedented three-dimensional bimetallic coordination polymer.

2005

The compound {Fe(pmd)[Ag(CN)2][Ag2(CN)3]} (pmd=pyrimidine) was synthesized and characterized. Magnetic, calorimetric and single crystal visible spectroscopic studies demonstrate the occurrence of a two-step high-spin (HS) right arrow over left arrow low-spin (LS) transition. The critical temperatures are T(c1)=185 and T(c2)=148 K. Each step involves approximately 50 % of the iron centers, with the low-temperature step showing a hysteresis of 2.5 K. The enthalpy and entropy variations associated with the two steps are DeltaH(1)=3.6+/-0.4 kJ mol(-1) and DeltaS(1)=19.5+/-3 J K(-1) mol(-1); DeltaH(2)=4.8+/-0.4 kJ mol(-1) and DeltaS(2)=33.5+/-3 J K(-1) mol(-1). Photomagnetic and visible spectros…

Spin statesCoordination polymerPolymersOrganic ChemistryEnthalpySpin transitionGeneral ChemistryCrystal structureSpin crossoverHeat capacityCoordination modesCatalysischemistry.chemical_compoundCrystallographychemistrySpin crossoverArgentophilic interactionsddc:540Single crystalChemistry (Weinheim an der Bergstrasse, Germany)
researchProduct

Spin Crossover and Paramagnetic Behaviour in Two-Dimensional Iron(II) Coordination Polymers with Stilbazole Push–Pull Ligands

2009

The suitability of the stilbazole push–pull ligands, 4′-dimethylaminostilbazole (DMAS) and 4′-diethylaminostilbazole (DEAS), for the construction of bimetallic FeII–AgI/AuI cyanide-based coordination polymers that exhibit spin crossover properties is investigated. The structural and physical characterization of four novel two-dimensional FeII polymers formulated as {Fe(DMAS)2[Ag(DMAS)(CN)2]2} (1) and {Fe(L)2[M(CN)2]2} (L = DMAS, M = Au (2); DEAS, Ag (3); DEAS, Au (4)) is reported. Polymers 1 and 4 are paramagnetic over the whole range of temperatures studied (5–300 K), whereas 2 and 3 exhibit spin crossover properties.

ParamagnetismSpin crossoverChemistrySupramolecular chemistryPhysical chemistryDensity functional theoryGeneral ChemistryCrystal structureBimetallic stripQuantum chemistryMacromoleculeAustralian Journal of Chemistry
researchProduct

Light induced excited spin state trapping in the binuclear spin crossover compound [Fe(bpym)(NCS)2]2(bpym) exhibiting a high-spin ground state

2008

Abstract A photo-magnetic effect is evidenced using near-infrared light in the binuclear complex [Fe(bpym)(NCS) 2 ] 2 (bpym). This compound has a 5 T 2g – 5 T 2g ground state and exhibits no thermal spin crossover – in contrast to the analogous [Fe(bpym)(NCSe) 2 ] 2 (bpym). The estimated photo-conversion ratio is ca. 30%. By means of magnetic susceptibility measurements as well as Raman and infrared absorption spectroscopies, the nature of the photo-induced phase was established as the 5 T 2g – 1 A 1g state, which means that only one iron center is converted to low-spin. The photo-induced state was completely converted back to the ground state either by visible light excitation or by heatin…

Spin statesChemistryGeneral Physics and AstronomyInfrared spectroscopyPhotochemistryMagnetic susceptibilitysymbols.namesakeCrystallographySpin crossoverExcited statesymbolsPhysical and Theoretical ChemistryRaman spectroscopyGround stateSpin (physics)Chemical Physics Letters
researchProduct

Inside Cover: Bidirectional Chemo-Switching of Spin State in a Microporous Framework (Angew. Chem. Int. Ed. 26/2009)

2009

Bidirectional chemo-switching of magnetism occurs in a microporous coordination polymer containing spin-crossover subunits, as described by M. Ohba, J. A. Real, S. Kitagawa, and co-workers in their Communication on page 4767 ff. In situ magnetic measurements reveal that most guest molecules transform the framework spin state from diamagnetic low spin (red) to paramagnetic high spin (yellow), whereas the guest CS2 stabilizes the low-spin state. These induced spin states are retained as a memory effect after the release of the guest.

Spin statesChemistryMagnetismCoordination polymerNanotechnologyGeneral ChemistryMicroporous materialCatalysisParamagnetismCrystallographychemistry.chemical_compoundSpin crossoverDiamagnetismCondensed Matter::Strongly Correlated ElectronsMetal-organic frameworkAngewandte Chemie International Edition
researchProduct

A novel dimer of oxo-di(acetato)-bridged manganese(III) dimers complex of potential biological significance

2000

[EN] Assembly of the tetranuclear oxomanganese(III) acetato cluster [Mn4O2(O2CMe)(7)(phen)(2)](BF4) from the dinuclear oxo-di(acetato)bridged manganese(III) species [Mn2O(O2CMe)(2)(H2O)(2)(phen)(2)](BF4)(2) . 3H(2)O in aqueous/acetic acid MeOH solution occurs via the new 'dimer of dimers' Mn-III complex [Mn2O(O2CMe)(3)(H2O)(phen)(2)](BF4) . MeOH possesing an unprecedent [Mn-4(mu-O)(2)(mu-O2Me)(4) (mu-(OH2O2CMe)-O-...)(2)] core.

ManganeseAqueous solutionStereochemistryCarboxylato complexesDimerchemistry.chemical_elementCrystal structureManganeseInorganic Chemistrychemistry.chemical_compoundAcetic acidN ligandsO ligandschemistryBiological significanceFISICA APLICADACrystal structuresMaterials ChemistryPhysical and Theoretical ChemistryCluster compounds
researchProduct

Tetrakis[(mu-hydroxo)(mu-sulfathiazolato)copper(II)] tetrakis(dimethyl sulfoxide): a new square-planar tetranuclear copper(II) complex containing fou…

2001

Inorganic Chemistrychemistry.chemical_compoundCrystallographyPlanarchemistryDimethyl sulfoxideInorganic chemistrychemistry.chemical_elementCrystal structurePhysical and Theoretical ChemistryElectrochemistryCopperSquare (algebra)Inorganic chemistry
researchProduct

Spin crossover behaviour in the iron(II)-2,2-dipyridilamine system: Synthesis, X-ray structure and magnetic studies

2005

Abstract The monomeric compounds [Fe(dpa)2(X)2] · solv [X = NCS−(solv = 0.5H2O) (1), N ( CN ) 2 - (2) and dpa = 2,2-dipyridilamine] have been synthesised and characterised. They crystallise in the P21/n and in the Cc monoclinic systems, respectively. Four of six nitrogen atoms coordinated to the Fe(II) ions belong to two dpa ligands which lie in cis conformation. The remaining positions are occupied by two nitrogen atoms of the pseudo-halide ligands. The magnetic susceptibility measurements at ambient pressure have revealed that compound 1 exhibits an incomplete spin crossover behaviour (T1/2 ≈ 88 K), whereas compound 2 remains in the high-spin configuration. Pressure studies performed on c…

Condensed matter physicsX-raychemistry.chemical_elementNitrogenMagnetic susceptibilityIonInorganic Chemistrychemistry.chemical_compoundCrystallographyMonomerchemistrySpin crossoverMaterials ChemistryPhysical and Theoretical ChemistryMonoclinic crystal systemAmbient pressureInorganica Chimica Acta
researchProduct

Competing Phases Involving Spin-State and Ligand Structural Orderings in a Multistable Two-Dimensional Spin Crossover Coordination Polymer

2017

[EN] Competition between spin-crossover and structural ligand ordering is identified as responsible for multistability and generation of six different phases in a rigid two-dimensional coordination polymer formulated {Fe-II[Hg-II(SCN)(3)](2) mu-(4,4'-bipy)(2)}(n) (1) (4,4'-bipy = 4,4'-bipyridine). The structure of 1 consists of infinite linear [Fe(mu-4,4'-bipy)](n)(2n+) chains linked by in situ formed {[Hg-II(SCN)(3)](2)(mu-4,4'-bipy)}(2n-) anionic dimers. The thermal dependence of the high-spin fraction, his, features four magnetic phases defined by steps following the sequence gamma(HS) = 1 (phase 1) gamma(HS) = 1/2 (phase 2) gamma(HS) approximate to 1/3 (phase 3) gamma(HS) = 0 (phase 4) …

Spin statesCondensed matter physics010405 organic chemistryLigandChemistryCoordination polymerSpontaneous symmetry breakingGeneral Chemistry010402 general chemistryCondensed Matter Physics01 natural sciences0104 chemical scienceschemistry.chemical_compoundCrystallographySpin crossoverFISICA APLICADAPhase (matter)[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]General Materials ScienceSingle crystalMultistabilityCrystal Growth &amp; Design
researchProduct

Metal complexes of a novel heterocyclic benzimidazole ligand formed by rearrangement-cyclization of the corresponding Schiff base. Electrosynthesis, …

2018

The electrochemical oxidation of anodic metals (M = cobalt, nickel, copper, zinc and cadmium) in a solution of the ligand 1H-anthra[1,2-d]imidazol-6,11-dione-2-[2-hydroxyphenyl] [H2L] afforded homoleptic [ML] compounds. The addition to the electrochemical cell of coligands (L′) such as 2,2′-bipyridine (bpy) or 1,10-phenanthroline (phen) allowed the synthesis, in one step, of heteroleptic [MLL′] compounds. The crystal structures of H2L (1), [CoL(MeOH)]2 (2), [CoL(phen)]2 (3), [NiL(bpy)]2 (4), [CuL(bpy)] (5), [CuL(phen)] (6) and [CdL(bpy)]2 (7) have been determined by X-ray diffraction techniques. The crystal structures of 2, 3, 4 and 7 consist of dimeric species in which both metallic atoms …

Infrared spectroscopyCrystal structureChemistry Techniques SyntheticMicrobial Sensitivity Tests010402 general chemistryElectrosynthesisLigands01 natural sciencesInorganic ChemistryMetalchemistry.chemical_compoundCoordination ComplexesMetals HeavyElectrochemistryHomolepticSchiff BasesSchiff base010405 organic chemistryLigandHydrogen bondMagnetic Phenomena0104 chemical sciencesAnti-Bacterial AgentsCrystallographychemistryCyclizationvisual_artvisual_art.visual_art_mediumBenzimidazolesDalton transactions (Cambridge, England : 2003)
researchProduct

Manganese(III)-mediated oxidative carbon-carbon bond cleavage of the 1,10-phenanthroline-5,6-dione ligand

1999

[EN] A new manganese(III)-1,10-phenanthroline-5,6-dione (phendione) complex possessing a putative Mn-2(mu-O) (mu-O2CMe)(2) core has been found to undergo a Ligand-based oxidative cleavage of the C(5)-C(6) bond in weak acid aqueous MeOH under aerobic conditions at room temperature to yield 2,2'-bipyridyl-3,3'-dicarboxylate with co-reduction to the corresponding Mn-II-phendione species.

chemistry.chemical_classificationQuinone complexesPolynuclear complexesAqueous solutionLigandCarboxylato complexesPhenanthrolinechemistry.chemical_elementCrystal structureManganesePhotochemistryCleavage (embryo)Medicinal chemistryInorganic Chemistrychemistry.chemical_compoundchemistryCarbon–carbon bondYield (chemistry)FISICA APLICADACrystal structuresOxidationMaterials ChemistryPhysical and Theoretical ChemistryManganese complexes
researchProduct

CCDC 2018380: Experimental Crystal Structure Determination

2020

Related Article: Rubén Turo-Cortés, Carlos Bartual-Murgui, Javier Castells-Gil, M. Carmen Muñoz, Carlos Martí-Gastaldo, José Antonio Real|2020|Chemical Science|11|11224|doi:10.1039/D0SC04246C

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[octakis(mu-cyano)-tetrakis(5-aminopyrimidine)-di-iron(ii)-di-palladium(ii) dihydrate]Experimental 3D Coordinates
researchProduct

CCDC 1965274: Experimental Crystal Structure Determination

2020

Related Article: Manuel Meneses-Sánchez, Lucía Piñeiro-López, Teresa Delgado, Carlos Bartual-Murgui, M. Carmen Muñoz, Pradip Chakraborty, José Antonio Real|2020|J.Mater.Chem.C|8|1623|doi:10.1039/C9TC06422B

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-((mu-44'-(buta-13-diyne-14-diyl)dipyridine)-tetrakis(mu-cyano)-di-gold-iron pyrene)Experimental 3D Coordinates
researchProduct

CCDC 1521585: Experimental Crystal Structure Determination

2016

Related Article: Francisco Javier Valverde-Muñoz, MaksymSeredyuk, M. Carmen Muñoz, Kateryna Znovjyak, IgorO. Fritsky, and José Antonio Real|2016|Inorg.Chem.|55|10654|doi:10.1021/acs.inorgchem.6b01901

catena-[tetrakis(mu-cyano)-bis(2-fluoropyrazine)-iron(ii)-palladium(ii)]Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1521589: Experimental Crystal Structure Determination

2016

Related Article: Francisco Javier Valverde-Muñoz, MaksymSeredyuk, M. Carmen Muñoz, Kateryna Znovjyak, IgorO. Fritsky, and José Antonio Real|2016|Inorg.Chem.|55|10654|doi:10.1021/acs.inorgchem.6b01901

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[tetrakis(mu-cyano)-(mu-2-fluoropyrazine)-di-gold-iron]Experimental 3D Coordinates
researchProduct

CCDC 2018391: Experimental Crystal Structure Determination

2020

Related Article: Rubén Turo-Cortés, Carlos Bartual-Murgui, Javier Castells-Gil, M. Carmen Muñoz, Carlos Martí-Gastaldo, José Antonio Real|2020|Chemical Science|11|11224|doi:10.1039/D0SC04246C

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[octakis(mu-cyano)-tetrakis(5-aminopyrimidine)-di-iron(ii)-di-platinum(ii) hydrate]Experimental 3D Coordinates
researchProduct

CCDC 1550080: Experimental Crystal Structure Determination

2017

Related Article: Lucı́a Piñeiro-López, Francisco Javier Valverde-Muñoz, Maksym Seredyuk, M. Carmen Muñoz, Matti Haukka, and José Antonio Real|2017|Inorg.Chem.|56|7038|doi:10.1021/acs.inorgchem.7b00639

Space GroupCrystallographyCrystal Systemcatena-[bis(mu-44'-(buta-13-diyne-14-diyl)dipyridine)-octakis(mu-cyano)-di-iron-di-palladium nitrobenzene solvate]Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 684617: Experimental Crystal Structure Determination

2015

Related Article: Daniel Aravena, Zulema Arcís Castillo, M. Carmen Muñoz, Ana B. Gaspar, Ko Yoneda, Ryo Ohtani, Akio Mishima, Susumu Kitagawa, Masaaki Ohba, José Antonio Real, Eliseo Ruiz|2014|Chem.-Eur.J.|20|12864|doi:10.1002/chem.201402292

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-(octakis(mu2-Cyano-CN)-bis(mu2-pyrazine)-di-iron-di-platinum thiophene solvate)Experimental 3D Coordinates
researchProduct

CCDC 1521590: Experimental Crystal Structure Determination

2016

Related Article: Francisco Javier Valverde-Muñoz, MaksymSeredyuk, M. Carmen Muñoz, Kateryna Znovjyak, IgorO. Fritsky, and José Antonio Real|2016|Inorg.Chem.|55|10654|doi:10.1021/acs.inorgchem.6b01901

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[tetrakis(mu-cyano)-(mu-2-fluoropyrazine)-di-gold-iron]Experimental 3D Coordinates
researchProduct

CCDC 2016312: Experimental Crystal Structure Determination

2020

Related Article: Lucía Piñeiro-López, Francisco-Javier Valverde-Muñoz, Elzbieta Trzop, M. Carmen Muñoz, Maksym Seredyuk, Javier Castells-Gil, Iván da Silva, Carlos Martí-Gastaldo, Eric Collet, José Antonio Real|2021|Chemical Science|12|1317|doi:10.1039/D0SC04420B

Space GroupCrystallographycatena-(tetrakis(mu-cyano)-(mu-38-phenanthroline)-di-gold-iron)Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1572177: Experimental Crystal Structure Determination

2017

Related Article: Carlos Bartual-Murgui, Lucía Piñeiro-López, F. Javier Valverde-Muñoz, M. Carmen Muñoz, Maksym Seredyuk, José Antonio Real|2017|Inorg.Chem.|56|13535|doi:10.1021/acs.inorgchem.7b02272

Space GroupCrystallography(N1N2-bis(quinolin-8-yl)ethane-12-diamine)-bis(isothiocyanato)-iron(ii)Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1572180: Experimental Crystal Structure Determination

2017

Related Article: Carlos Bartual-Murgui, Lucía Piñeiro-López, F. Javier Valverde-Muñoz, M. Carmen Muñoz, Maksym Seredyuk, José Antonio Real|2017|Inorg.Chem.|56|13535|doi:10.1021/acs.inorgchem.7b02272

Space GroupCrystallographyCrystal System(N1N2-bis(quinolin-8-yl)ethane-12-diamine)-bis(selenocyanato)-ironCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1521583: Experimental Crystal Structure Determination

2016

Related Article: Francisco Javier Valverde-Muñoz, MaksymSeredyuk, M. Carmen Muñoz, Kateryna Znovjyak, IgorO. Fritsky, and José Antonio Real|2016|Inorg.Chem.|55|10654|doi:10.1021/acs.inorgchem.6b01901

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[tetrakis(mu-cyano)-bis(2-fluoropyrazine)-iron(ii)-nickel(ii)]Experimental 3D Coordinates
researchProduct

CCDC 1572183: Experimental Crystal Structure Determination

2017

Related Article: Carlos Bartual-Murgui, Lucía Piñeiro-López, F. Javier Valverde-Muñoz, M. Carmen Muñoz, Maksym Seredyuk, José Antonio Real|2017|Inorg.Chem.|56|13535|doi:10.1021/acs.inorgchem.7b02272

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters(N1N2-bis(quinolin-8-yl)ethane-12-diamine)-bis(isothiocyanato)-nickel(ii)Experimental 3D Coordinates
researchProduct

CCDC 1572184: Experimental Crystal Structure Determination

2017

Related Article: Carlos Bartual-Murgui, Lucía Piñeiro-López, F. Javier Valverde-Muñoz, M. Carmen Muñoz, Maksym Seredyuk, José Antonio Real|2017|Inorg.Chem.|56|13535|doi:10.1021/acs.inorgchem.7b02272

Space GroupCrystallographyCrystal SystemCrystal Structure(N1N2-bis(quinolin-8-yl)ethane-12-diamine)-bis(selenocyanato)-nickel(ii)Cell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1897989: Experimental Crystal Structure Determination

2019

Related Article: Wenlong Lan, Francisco Javier Valverde-Muñoz, Yong Dou, Xiaoyun Hao, M. Carmen Muñoz, Zhen Zhou, Hui Liu, Qingyun Liu, José Antonio Real, Daopeng Zhang|2019|Dalton Trans.|48|17014|doi:10.1039/C9DT03285A

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[bis(mu-isoselenocyanato)-bis{mu-N1-(pyridin-4-yl)-N3-(pyridin-4-yl)benzene-13-dicarboxamide}-iron NN-dimethylformamide solvate]Experimental 3D Coordinates
researchProduct

CCDC 1910592: Experimental Crystal Structure Determination

2019

Related Article: Francisco Javier Valverde-Muñoz, Carlos Bartual-Murgui, Lucía Piñeiro-López, M. Carmen Muñoz, José Antonio Real|2019|Inorg.Chem.|58|10038|doi:10.1021/acs.inorgchem.9b01189

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[(mu- N-(pyridin-4-yl)pyridine-4-carboxamide)-tetrakis(mu-cyano)-di-gold(i)-iron(ii) methanol unknown solvate]Experimental 3D Coordinates
researchProduct

CCDC 2018392: Experimental Crystal Structure Determination

2020

Related Article: Rubén Turo-Cortés, Carlos Bartual-Murgui, Javier Castells-Gil, M. Carmen Muñoz, Carlos Martí-Gastaldo, José Antonio Real|2020|Chemical Science|11|11224|doi:10.1039/D0SC04246C

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[octakis(mu-cyano)-tetrakis(5-aminopyrimidine)-di-iron(ii)-di-palladium(ii) dihydrate]Experimental 3D Coordinates
researchProduct

CCDC 1565402: Experimental Crystal Structure Determination

2017

Related Article: Lucía Piñeiro-López, Francisco Javier-Valverde-Muñoz, Maksym Seredyuk, Carlos Bartual-Murgui, M. Carmen Muñoz, José Antonio Real|2018|Eur.J.Inorg.Chem.||289|doi:10.1002/ejic.201700920

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[(mu-26-naphthyridine)-pentakis(mu-cyano)-iron-tri-silver]Experimental 3D Coordinates
researchProduct

CCDC 1572181: Experimental Crystal Structure Determination

2017

Related Article: Carlos Bartual-Murgui, Lucía Piñeiro-López, F. Javier Valverde-Muñoz, M. Carmen Muñoz, Maksym Seredyuk, José Antonio Real|2017|Inorg.Chem.|56|13535|doi:10.1021/acs.inorgchem.7b02272

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters(N1N2-bis(quinolin-8-yl)ethane-12-diamine)-bis(isothiocyanato)-nickel(ii)Experimental 3D Coordinates
researchProduct

CCDC 1989161: Experimental Crystal Structure Determination

2020

Related Article: Carlos Bartual-Murgui, Víctor Rubio-Giménez, Manuel Meneses-Sánchez, Francisco Javier Valverde-Muñoz, Sergio Tatay, Carlos Martí-Gastaldo, M. Carmen Muñoz, José Antonio Real|2020|ACS Applied Materials and Interfaces|12|29461|doi:10.1021/acsami.0c05733

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-(tetrakis(mu-cyano)-bis(isoquinoline)-iron-palladium)Experimental 3D Coordinates
researchProduct

CCDC 1418191: Experimental Crystal Structure Determination

2015

Related Article: Maksym Seredyuk , Lucía Piñeiro-López , M. Carmen Muñoz , Francisco J. Martínez-Casado , Gábor Molnár , José Alberto Rodriguez-Velamazán , Azzedine Bousseksou , José Antonio Real|2015|Inorg.Chem.|54|7424|doi:10.1021/acs.inorgchem.5b01001

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-((mu3-55'-(22'-Bipyridine-66'-diyl)ditetrazolato)-iron)Experimental 3D Coordinates
researchProduct

CCDC 1989160: Experimental Crystal Structure Determination

2020

Related Article: Carlos Bartual-Murgui, Víctor Rubio-Giménez, Manuel Meneses-Sánchez, Francisco Javier Valverde-Muñoz, Sergio Tatay, Carlos Martí-Gastaldo, M. Carmen Muñoz, José Antonio Real|2020|ACS Applied Materials and Interfaces|12|29461|doi:10.1021/acsami.0c05733

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinatescatena-(tetrakis(mu-cyano)-bis(isoquinoline)-iron-nickel)
researchProduct

CCDC 684616: Experimental Crystal Structure Determination

2015

Related Article: Daniel Aravena, Zulema Arcís Castillo, M. Carmen Muñoz, Ana B. Gaspar, Ko Yoneda, Ryo Ohtani, Akio Mishima, Susumu Kitagawa, Masaaki Ohba, José Antonio Real, Eliseo Ruiz|2014|Chem.-Eur.J.|20|12864|doi:10.1002/chem.201402292

Space GroupCrystallographycatena-(tetrakis(mu2-Cyano-CN)-(mu2-pyrazine)-iron-platinum furan solvate)Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1989157: Experimental Crystal Structure Determination

2020

Related Article: Carlos Bartual-Murgui, Víctor Rubio-Giménez, Manuel Meneses-Sánchez, Francisco Javier Valverde-Muñoz, Sergio Tatay, Carlos Martí-Gastaldo, M. Carmen Muñoz, José Antonio Real|2020|ACS Applied Materials and Interfaces|12|29461|doi:10.1021/acsami.0c05733

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-(tetrakis(mu-cyano)-bis(pyrimidine)-iron-palladium monohydrate)Experimental 3D Coordinates
researchProduct

CCDC 1917753: Experimental Crystal Structure Determination

2019

Related Article: Víctor García-López, Mario Palacios-Corella, Verónica Gironés-Pérez, Carlos Bartual-Murgui, José Antonio Real, Eric Pellegrin, Javier Herrero-Martín, Guillem Aromí, Miguel Clemente-León, Eugenio Coronado|2019|Inorg.Chem.|58|12199|doi:10.1021/acs.inorgchem.9b01526

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters[26-bis(1H-pyrazol-1-yl)pyridine-4-carboxylic acid]-[ethyl 26-bis(1H-pyrazol-1-yl)pyridine-4-carboxylate]-iron(ii) bis(perchlorate) acetone solvateExperimental 3D Coordinates
researchProduct

CCDC 1847351: Experimental Crystal Structure Determination

2018

Related Article: Teresa Delgado, Manuel Meneses-Sánchez, Lucía Piñeiro-López, Carlos Bartual-Murgui, M. Carmen Muñoz, José Antonio Real|2018|Chemical Science|9|8446|doi:10.1039/C8SC02677G

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[bis(mu-44'-(14-phenylene)dipyridine)-octakis(mu-cyano)-tetra-gold-di-iron bis(pyrene)]Experimental 3D Coordinates
researchProduct

CCDC 1910990: Experimental Crystal Structure Determination

2020

Related Article: Carlos Bartual-Murgui, Víctor Rubio-Giménez, Manuel Meneses-Sánchez, Francisco Javier Valverde-Muñoz, Sergio Tatay, Carlos Martí-Gastaldo, M. Carmen Muñoz, José Antonio Real|2020|ACS Applied Materials and Interfaces|12|29461|doi:10.1021/acsami.0c05733

catena-(tetrakis(mu-cyano)-bis(isoquinoline)-iron-platinum)Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1418192: Experimental Crystal Structure Determination

2015

Related Article: Maksym Seredyuk , Lucía Piñeiro-López , M. Carmen Muñoz , Francisco J. Martínez-Casado , Gábor Molnár , José Alberto Rodriguez-Velamazán , Azzedine Bousseksou , José Antonio Real|2015|Inorg.Chem.|54|7424|doi:10.1021/acs.inorgchem.5b01001

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D CoordinatesTriethylammonium (66'-bis(tetrazolato-5-yl)-22'-bipyridine)-(hydrogen 66'-bis(tetrazolato-5-yl)-22'-bipyridine)-iron(ii) methanol solvate
researchProduct

CCDC 904082: Experimental Crystal Structure Determination

2013

Related Article: Zulema Arcís-Castillo, M. Carmen Muñoz, Gábor Molnár, Azzedine Bousseksou, José Antonio Real|2013|Chem.-Eur.J.|19|6851|doi:10.1002/chem.201203559

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[bis(mu3-246-tris(4-pyridyl)-135-triazine)-dodecakis(mu2-cyano)-hexa-gold-tri-iron]Experimental 3D Coordinates
researchProduct

CCDC 904083: Experimental Crystal Structure Determination

2013

Related Article: Zulema Arcís-Castillo, M. Carmen Muñoz, Gábor Molnár, Azzedine Bousseksou, José Antonio Real|2013|Chem.-Eur.J.|19|6851|doi:10.1002/chem.201203559

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[bis(mu3-246-tris(4-pyridyl)-135-triazine)-dodecakis(mu2-cyano)-hexa-gold-tri-iron dichloromethane solvate]Experimental 3D Coordinates
researchProduct

CCDC 2010363: Experimental Crystal Structure Determination

2020

Related Article: Lucía Piñeiro-López, Francisco-Javier Valverde-Muñoz, Elzbieta Trzop, M. Carmen Muñoz, Maksym Seredyuk, Javier Castells-Gil, Iván da Silva, Carlos Martí-Gastaldo, Eric Collet, José Antonio Real|2021|Chemical Science|12|1317|doi:10.1039/D0SC04420B

Space GroupCrystallographyCrystal Systemcatena-(tetrakis(mu-cyano)-(mu-38-phenanthroline)-di-gold-iron nitrobenzene solvate)Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1994888: Experimental Crystal Structure Determination

2020

Related Article: Francisco‐Javier Valverde‐Muñoz, Maksym Seredyuk, M. Carmen Muñoz, Gábor Molnár, Yurii S. Bibik, José Antonio Real|2020|Angew.Chem.,Int.Ed.|59|18632|doi:10.1002/anie.202006453

Space GroupCrystallographybis{345-tris(hexyloxy)-N-[1-(pyrimidin-2-yl)propylidene]benzene-1-carbohydrazonato}-iron(ii)Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2209231: Experimental Crystal Structure Determination

2022

Related Article: Miguel Gavara-Edo, Francisco Javier Valverde-Muñoz, Rosa Córdoba, M. Carmen Muñoz, Javier Herrero-Martín, José Antonio Real, Eugenio Coronado|2022|J.Mater.Chem.C|11|8107|doi:10.1039/D2TC04120K

Space GroupCrystallographybis(dihydrogen bis(pyrazolyl)borate)-(44'55'-tetrahydro-22'-bi-13-thiazole)-iron dichloromethane solvateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2209228: Experimental Crystal Structure Determination

2022

Related Article: Miguel Gavara-Edo, Francisco Javier Valverde-Muñoz, Rosa Córdoba, M. Carmen Muñoz, Javier Herrero-Martín, José Antonio Real, Eugenio Coronado|2022|J.Mater.Chem.C|11|8107|doi:10.1039/D2TC04120K

Space GroupCrystallographybis(dihydrogen bis(pyrazolyl)borate)-(55'66'-tetrahydro-4H4'H-22'-bi-13-thiazine)-ironCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 684618: Experimental Crystal Structure Determination

2015

Related Article: Daniel Aravena, Zulema Arcís Castillo, M. Carmen Muñoz, Ana B. Gaspar, Ko Yoneda, Ryo Ohtani, Akio Mishima, Susumu Kitagawa, Masaaki Ohba, José Antonio Real, Eliseo Ruiz|2014|Chem.-Eur.J.|20|12864|doi:10.1002/chem.201402292

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-(octakis(mu2-Cyano-CN)-bis(mu2-pyrazine)-di-iron-di-platinum thiophene solvate)Experimental 3D Coordinates
researchProduct

CCDC 1418190: Experimental Crystal Structure Determination

2015

Related Article: Maksym Seredyuk , Lucía Piñeiro-López , M. Carmen Muñoz , Francisco J. Martínez-Casado , Gábor Molnár , José Alberto Rodriguez-Velamazán , Azzedine Bousseksou , José Antonio Real|2015|Inorg.Chem.|54|7424|doi:10.1021/acs.inorgchem.5b01001

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-((mu3-55'-(22'-Bipyridine-66'-diyl)ditetrazolato)-iron)Experimental 3D Coordinates
researchProduct

CCDC 2209227: Experimental Crystal Structure Determination

2022

Related Article: Miguel Gavara-Edo, Francisco Javier Valverde-Muñoz, Rosa Córdoba, M. Carmen Muñoz, Javier Herrero-Martín, José Antonio Real, Eugenio Coronado|2022|J.Mater.Chem.C|11|8107|doi:10.1039/D2TC04120K

Space GroupCrystallographybis(dihydrogen bis(pyrazolyl)borate)-(44'55'-tetrahydro-22'-bi-13-thiazole)-iron dichloromethane solvateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1910594: Experimental Crystal Structure Determination

2019

Related Article: Francisco Javier Valverde-Muñoz, Carlos Bartual-Murgui, Lucía Piñeiro-López, M. Carmen Muñoz, José Antonio Real|2019|Inorg.Chem.|58|10038|doi:10.1021/acs.inorgchem.9b01189

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[tetrakis(mu-cyano)-(mu-N-(pyridin-4-yl)pyridine-4-carboxamide)-iron-di-silver methanol solvate]Experimental 3D Coordinates
researchProduct

CCDC 2018389: Experimental Crystal Structure Determination

2020

Related Article: Rubén Turo-Cortés, Carlos Bartual-Murgui, Javier Castells-Gil, M. Carmen Muñoz, Carlos Martí-Gastaldo, José Antonio Real|2020|Chemical Science|11|11224|doi:10.1039/D0SC04246C

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1521587: Experimental Crystal Structure Determination

2016

Related Article: Francisco Javier Valverde-Muñoz, MaksymSeredyuk, M. Carmen Muñoz, Kateryna Znovjyak, IgorO. Fritsky, and José Antonio Real|2016|Inorg.Chem.|55|10654|doi:10.1021/acs.inorgchem.6b01901

Space GroupCrystallographycatena-[tetrakis(mu-cyano)-bis(2-fluoropyrazine)-iron(ii)-platinum(ii)]Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1847352: Experimental Crystal Structure Determination

2018

Related Article: Teresa Delgado, Manuel Meneses-Sánchez, Lucía Piñeiro-López, Carlos Bartual-Murgui, M. Carmen Muñoz, José Antonio Real|2018|Chemical Science|9|8446|doi:10.1039/C8SC02677G

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[bis(mu-44'-(14-phenylene)dipyridine)-octakis(mu-cyano)-tetra-gold-di-iron bis(pyrene)]Experimental 3D Coordinates
researchProduct

CCDC 1572182: Experimental Crystal Structure Determination

2017

Related Article: Carlos Bartual-Murgui, Lucía Piñeiro-López, F. Javier Valverde-Muñoz, M. Carmen Muñoz, Maksym Seredyuk, José Antonio Real|2017|Inorg.Chem.|56|13535|doi:10.1021/acs.inorgchem.7b02272

Space GroupCrystallographyCrystal SystemCrystal Structure(N1N2-bis(quinolin-8-yl)ethane-12-diamine)-bis(selenocyanato)-nickel(ii)Cell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1989159: Experimental Crystal Structure Determination

2020

Related Article: Carlos Bartual-Murgui, Víctor Rubio-Giménez, Manuel Meneses-Sánchez, Francisco Javier Valverde-Muñoz, Sergio Tatay, Carlos Martí-Gastaldo, M. Carmen Muñoz, José Antonio Real|2020|ACS Applied Materials and Interfaces|12|29461|doi:10.1021/acsami.0c05733

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-(tetrakis(mu-cyano)-(mu-pyrimidine)-(pyrimidine)-iron-nickel)Experimental 3D Coordinates
researchProduct

CCDC 1585097: Experimental Crystal Structure Determination

2018

Related Article: Daopeng Zhang, Francisco Javier Valverde-Muñoz, Carlos Bartual-Murgui, Lucía Piñeiro-López, M. Carmen Muñoz, José Antonio Real|2018|Inorg.Chem.|57|1562|doi:10.1021/acs.inorgchem.7b02906

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-(dodecakis(mu-thiocyanato)-pentakis(mu-44'-(14-phenylene)dipyridine)-bis(44'-(14-phenylene)dipyridine)-hexakis(isothiocyanato)-tri-iron-hexa-mercury dihydrate)Experimental 3D Coordinates
researchProduct

CCDC 2018381: Experimental Crystal Structure Determination

2020

Related Article: Rubén Turo-Cortés, Carlos Bartual-Murgui, Javier Castells-Gil, M. Carmen Muñoz, Carlos Martí-Gastaldo, José Antonio Real|2020|Chemical Science|11|11224|doi:10.1039/D0SC04246C

Space GroupCrystallographyCrystal SystemCrystal Structurecatena-[tetrakis(mu-cyano)-bis(pyrimidin-5-amine)-platinum(ii)-iron(ii)]Cell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1577872: Experimental Crystal Structure Determination

2017

Related Article: Albert C. Aragonès, Daniel Aravena, Francisco J. Valverde-Muñoz, José Antonio Real, Fausto Sanz, Ismael Díez-Pérez, Eliseo Ruiz|2017|J.Am.Chem.Soc.|139|5768|doi:10.1021/jacs.6b11166

Space GroupCrystallographyCrystal SystemCrystal Structurebis[3-(pyridin-2-yl)[123]triazolo[15-a]pyridine]-bis(selenocyanato)-cobalt(ii)Cell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1910992: Experimental Crystal Structure Determination

2020

Related Article: Carlos Bartual-Murgui, Víctor Rubio-Giménez, Manuel Meneses-Sánchez, Francisco Javier Valverde-Muñoz, Sergio Tatay, Carlos Martí-Gastaldo, M. Carmen Muñoz, José Antonio Real|2020|ACS Applied Materials and Interfaces|12|29461|doi:10.1021/acsami.0c05733

Space GroupCrystallographycatena-(tetrakis(mu-cyano)-bis(pyrimidine)-iron-platinum hemihydrate)Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 684615: Experimental Crystal Structure Determination

2015

Related Article: Daniel Aravena, Zulema Arcís Castillo, M. Carmen Muñoz, Ana B. Gaspar, Ko Yoneda, Ryo Ohtani, Akio Mishima, Susumu Kitagawa, Masaaki Ohba, José Antonio Real, Eliseo Ruiz|2014|Chem.-Eur.J.|20|12864|doi:10.1002/chem.201402292

Space GroupCrystallographycatena-(tetrakis(mu2-Cyano-CN)-(mu2-pyrazine)-iron-platinum furan solvate)Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1910593: Experimental Crystal Structure Determination

2019

Related Article: Francisco Javier Valverde-Muñoz, Carlos Bartual-Murgui, Lucía Piñeiro-López, M. Carmen Muñoz, José Antonio Real|2019|Inorg.Chem.|58|10038|doi:10.1021/acs.inorgchem.9b01189

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[tetrakis(mu-cyano)-(mu-N-(pyridin-4-yl)pyridine-4-carboxamide)-iron-di-silver]Experimental 3D Coordinates
researchProduct

CCDC 1848631: Experimental Crystal Structure Determination

2018

Related Article: Teresa Delgado, Antoine Tissot, Laure Guénée, Andreas Hauser, Francisco Javier Valverde-Muñoz, Maksym Seredyuk, José Antonio Real, Sébastien Pillet, El-Eulmi Bendeif, Céline Besnard|2018|J.Am.Chem.Soc.|140|12870|doi:10.1021/jacs.8b06042

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters(NNN-tris(2-(((1-butyl-1H-imidazol-2-yl)methylidene)amino)ethyl)amine)-iron(ii) bis(hexafluorophosphate)Experimental 3D Coordinates
researchProduct

CCDC 1970081: Experimental Crystal Structure Determination

2020

Related Article: Céline Mariette, Elzbieta Trzop, Jean-Yves Mevellec, Abdou Boucekkine, Aziz Ghoufi, Guillaume Maurin, Eric Collet, M. Carmen Muñoz, José Antonio Real, Bertrand Toudic|2020|Physical Review B: covering condensed matter and materials physics|101|134103|doi:10.1103/PhysRevB.101.134103

Space GroupCrystallographyCrystal Systemcatena-[bis(mu-44'-(ethene-12-diyl)dipyridine)-bis(isothiocyanato)-iron(ii) benzaldehyde solvate]Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2010365: Experimental Crystal Structure Determination

2020

Related Article: Lucía Piñeiro-López, Francisco-Javier Valverde-Muñoz, Elzbieta Trzop, M. Carmen Muñoz, Maksym Seredyuk, Javier Castells-Gil, Iván da Silva, Carlos Martí-Gastaldo, Eric Collet, José Antonio Real|2021|Chemical Science|12|1317|doi:10.1039/D0SC04420B

Space GroupCrystallographyCrystal Systemcatena-(tetrakis(mu-cyano)-(mu-38-phenanthroline)-di-gold-iron nitrobenzene solvate)Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1897988: Experimental Crystal Structure Determination

2019

Related Article: Wenlong Lan, Francisco Javier Valverde-Muñoz, Yong Dou, Xiaoyun Hao, M. Carmen Muñoz, Zhen Zhou, Hui Liu, Qingyun Liu, José Antonio Real, Daopeng Zhang|2019|Dalton Trans.|48|17014|doi:10.1039/C9DT03285A

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[bis(isothiocyanato)-bis{mu-N1-(pyridin-4-yl)-N3-(pyridin-4-yl)benzene-13-dicarboxamide}-iron NN-dimethylformamide solvate]Experimental 3D Coordinates
researchProduct

CCDC 1550075: Experimental Crystal Structure Determination

2017

Related Article: Lucı́a Piñeiro-López, Francisco Javier Valverde-Muñoz, Maksym Seredyuk, M. Carmen Muñoz, Matti Haukka, and José Antonio Real|2017|Inorg.Chem.|56|7038|doi:10.1021/acs.inorgchem.7b00639

Space GroupCrystallographycatena-[bis(mu-44'-(buta-13-diyne-14-diyl)dipyridine)-octakis(mu-cyano)-di-iron-di-nickel tetrakis(naphthalene)]Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 684614: Experimental Crystal Structure Determination

2015

Related Article: Daniel Aravena, Zulema Arcís Castillo, M. Carmen Muñoz, Ana B. Gaspar, Ko Yoneda, Ryo Ohtani, Akio Mishima, Susumu Kitagawa, Masaaki Ohba, José Antonio Real, Eliseo Ruiz|2014|Chem.-Eur.J.|20|12864|doi:10.1002/chem.201402292

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[tetrakis(mu2-cyano)-(mu2-pyrazine)-iron-platinum furan]Experimental 3D Coordinates
researchProduct

CCDC 1565404: Experimental Crystal Structure Determination

2017

Related Article: Lucía Piñeiro-López, Francisco Javier-Valverde-Muñoz, Maksym Seredyuk, Carlos Bartual-Murgui, M. Carmen Muñoz, José Antonio Real|2018|Eur.J.Inorg.Chem.||289|doi:10.1002/ejic.201700920

Space GroupCrystallographyCrystal SystemCrystal Structurecatena-[(mu-26-naphthyridine)-tetrakis(mu-cyano)-iron(ii)-di-gold(i) nitrobenzene solvate]Cell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1965275: Experimental Crystal Structure Determination

2020

Related Article: Manuel Meneses-Sánchez, Lucía Piñeiro-López, Teresa Delgado, Carlos Bartual-Murgui, M. Carmen Muñoz, Pradip Chakraborty, José Antonio Real|2020|J.Mater.Chem.C|8|1623|doi:10.1039/C9TC06422B

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-((mu-44'-(buta-13-diyne-14-diyl)dipyridine)-tetrakis(mu-cyano)-iron-di-silver pyrene)Experimental 3D Coordinates
researchProduct

CCDC 1585098: Experimental Crystal Structure Determination

2018

Related Article: Daopeng Zhang, Francisco Javier Valverde-Muñoz, Carlos Bartual-Murgui, Lucía Piñeiro-López, M. Carmen Muñoz, José Antonio Real|2018|Inorg.Chem.|57|1562|doi:10.1021/acs.inorgchem.7b02906

Space GroupCrystallographycatena-(octakis(mu-thiocyanato)-bis(33'-bipyridine)-di-iron-di-mercury)Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2018390: Experimental Crystal Structure Determination

2020

Related Article: Rubén Turo-Cortés, Carlos Bartual-Murgui, Javier Castells-Gil, M. Carmen Muñoz, Carlos Martí-Gastaldo, José Antonio Real|2020|Chemical Science|11|11224|doi:10.1039/D0SC04246C

Space GroupCrystallographyCrystal SystemCrystal Structurecatena-[octakis(mu-cyano)-tetrakis(5-aminopyrimidine)-di-iron(ii)-di-platinum(ii) methanol solvate]Cell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1910991: Experimental Crystal Structure Determination

2019

Related Article: Carlos Bartual-Murgui, Víctor Rubio-Giménez, Manuel Meneses-Sánchez, Francisco Javier Valverde-Muñoz, Sergio Tatay, Carlos Martí-Gastaldo, M. Carmen Muñoz, José Antonio Real|2020|ACS Applied Materials and Interfaces|12|29461|doi:10.1021/acsami.0c05733

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[tetrakis(mu-cyano)-bis(pyrimidine)-iron-platinum hydrate]Experimental 3D Coordinates
researchProduct

CCDC 1917752: Experimental Crystal Structure Determination

2019

Related Article: Víctor García-López, Mario Palacios-Corella, Verónica Gironés-Pérez, Carlos Bartual-Murgui, José Antonio Real, Eric Pellegrin, Javier Herrero-Martín, Guillem Aromí, Miguel Clemente-León, Eugenio Coronado|2019|Inorg.Chem.|58|12199|doi:10.1021/acs.inorgchem.9b01526

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters{26-bis[5-([11'-biphenyl]-4-yl)-1H-pyrazol-3-yl]pyridine}-[26-bis(1H-pyrazol-1-yl)pyridine-4-carboxylic acid]-iron(ii) bis(perchlorate) acetone solvateExperimental 3D Coordinates
researchProduct

CCDC 1550084: Experimental Crystal Structure Determination

2017

Related Article: Lucı́a Piñeiro-López, Francisco Javier Valverde-Muñoz, Maksym Seredyuk, M. Carmen Muñoz, Matti Haukka, and José Antonio Real|2017|Inorg.Chem.|56|7038|doi:10.1021/acs.inorgchem.7b00639

Space GroupCrystallographycatena-[bis(mu-44'-(buta-13-diyne-14-diyl)dipyridine)-octakis(mu-cyano)-di-iron-di-nickel tetrakis(naphthalene)]Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1897990: Experimental Crystal Structure Determination

2019

Related Article: Wenlong Lan, Francisco Javier Valverde-Muñoz, Yong Dou, Xiaoyun Hao, M. Carmen Muñoz, Zhen Zhou, Hui Liu, Qingyun Liu, José Antonio Real, Daopeng Zhang|2019|Dalton Trans.|48|17014|doi:10.1039/C9DT03285A

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[bis(mu-isoselenocyanato)-bis(mu-N1-(pyridin-4-yl)-N3-(pyridin-4-yl)benzene-13-dicarboxamide)-iron NN-dimethylformamide solvate]Experimental 3D Coordinates
researchProduct

CCDC 2018379: Experimental Crystal Structure Determination

2020

Related Article: Rubén Turo-Cortés, Carlos Bartual-Murgui, Javier Castells-Gil, M. Carmen Muñoz, Carlos Martí-Gastaldo, José Antonio Real|2020|Chemical Science|11|11224|doi:10.1039/D0SC04246C

Space GroupCrystallographyCrystal SystemCrystal Structurecatena-[tetrakis(mu-cyano)-bis(pyrimidin-5-amine)-palladium(ii)-iron(ii)]Cell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1521586: Experimental Crystal Structure Determination

2016

Related Article: Francisco Javier Valverde-Muñoz, MaksymSeredyuk, M. Carmen Muñoz, Kateryna Znovjyak, IgorO. Fritsky, and José Antonio Real|2016|Inorg.Chem.|55|10654|doi:10.1021/acs.inorgchem.6b01901

Space GroupCrystallographycatena-[tetrakis(mu-cyano)-bis(2-fluoropyrazine)-iron(ii)-platinum(ii)]Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1965272: Experimental Crystal Structure Determination

2020

Related Article: Manuel Meneses-Sánchez, Lucía Piñeiro-López, Teresa Delgado, Carlos Bartual-Murgui, M. Carmen Muñoz, Pradip Chakraborty, José Antonio Real|2020|J.Mater.Chem.C|8|1623|doi:10.1039/C9TC06422B

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-((mu-44'-(anthracene-910-diyl)dipyridine)-tetrakis(mu-cyano)-di-gold-iron)Experimental 3D Coordinates
researchProduct

CCDC 1894402: Experimental Crystal Structure Determination

2019

Related Article: Wenlong Lan, Francisco Javier Valverde-Muñoz, Xiaoyun Hao, Yong Dou, M. Carmen Muñoz, Zhen Zhou, Hui Liu, Qingyun Liu, José Antonio Real, Daopeng Zhang|2019|Chem.Commun.|55|4607|doi:10.1039/C9CC01291E

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[tetrakis(mu-selenocyanidato)-(mu-44'-(ethane-12-diyl)dipyridine)-iron-mercury unknown solvate]Experimental 3D Coordinates
researchProduct

CCDC 2010361: Experimental Crystal Structure Determination

2020

Related Article: Lucía Piñeiro-López, Francisco-Javier Valverde-Muñoz, Elzbieta Trzop, M. Carmen Muñoz, Maksym Seredyuk, Javier Castells-Gil, Iván da Silva, Carlos Martí-Gastaldo, Eric Collet, José Antonio Real|2021|Chemical Science|12|1317|doi:10.1039/D0SC04420B

Space GroupCrystallographyCrystal Systemcatena-(tetrakis(mu-cyano)-(mu-38-phenanthroline)-di-gold-iron nitrobenzene solvate)Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1848628: Experimental Crystal Structure Determination

2018

Related Article: Teresa Delgado, Antoine Tissot, Laure Guénée, Andreas Hauser, Francisco Javier Valverde-Muñoz, Maksym Seredyuk, José Antonio Real, Sébastien Pillet, El-Eulmi Bendeif, Céline Besnard|2018|J.Am.Chem.Soc.|140|12870|doi:10.1021/jacs.8b06042

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters(NNN-tris(2-(((1-butyl-1H-imidazol-2-yl)methylidene)amino)ethyl)amine)-iron(ii) bis(hexafluorophosphate)Experimental 3D Coordinates
researchProduct

CCDC 1965273: Experimental Crystal Structure Determination

2020

Related Article: Manuel Meneses-Sánchez, Lucía Piñeiro-López, Teresa Delgado, Carlos Bartual-Murgui, M. Carmen Muñoz, Pradip Chakraborty, José Antonio Real|2020|J.Mater.Chem.C|8|1623|doi:10.1039/C9TC06422B

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-((mu-44'-(buta-13-diyne-14-diyl)dipyridine)-tetrakis(mu-cyano)-iron-di-silver pyrene)Experimental 3D Coordinates
researchProduct

CCDC 1565403: Experimental Crystal Structure Determination

2017

Related Article: Lucía Piñeiro-López, Francisco Javier-Valverde-Muñoz, Maksym Seredyuk, Carlos Bartual-Murgui, M. Carmen Muñoz, José Antonio Real|2018|Eur.J.Inorg.Chem.||289|doi:10.1002/ejic.201700920

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[(mu-26-naphthyridine)-pentakis(mu-cyano)-iron-tri-silver]Experimental 3D Coordinates
researchProduct

CCDC 2018384: Experimental Crystal Structure Determination

2020

Related Article: Rubén Turo-Cortés, Carlos Bartual-Murgui, Javier Castells-Gil, M. Carmen Muñoz, Carlos Martí-Gastaldo, José Antonio Real|2020|Chemical Science|11|11224|doi:10.1039/D0SC04246C

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[octakis(mu-cyano)-tetrakis(5-aminopyrimidine)-di-iron(ii)-di-palladium(ii) dihydrate]Experimental 3D Coordinates
researchProduct

CCDC 2018386: Experimental Crystal Structure Determination

2020

Related Article: Rubén Turo-Cortés, Carlos Bartual-Murgui, Javier Castells-Gil, M. Carmen Muñoz, Carlos Martí-Gastaldo, José Antonio Real|2020|Chemical Science|11|11224|doi:10.1039/D0SC04246C

Space GroupCrystallographycatena-[octakis(mu-cyano)-tetrakis(5-aminopyrimidine)-di-iron(ii)-di-platinum(ii) ethanol solvate]Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1585096: Experimental Crystal Structure Determination

2018

Related Article: Daopeng Zhang, Francisco Javier Valverde-Muñoz, Carlos Bartual-Murgui, Lucía Piñeiro-López, M. Carmen Muñoz, José Antonio Real|2018|Inorg.Chem.|57|1562|doi:10.1021/acs.inorgchem.7b02906

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-(bis(mu-44'-[hydrazine-12-diylidenebis(eth-1-yl-1-ylidene)]dipyridine)-tetrakis(mu-thiocyanato)-bis(thiocyanato)-iron-di-mercury monohydrate)Experimental 3D Coordinates
researchProduct

CCDC 1910989: Experimental Crystal Structure Determination

2019

Related Article: Carlos Bartual-Murgui, Víctor Rubio-Giménez, Manuel Meneses-Sánchez, Francisco Javier Valverde-Muñoz, Sergio Tatay, Carlos Martí-Gastaldo, M. Carmen Muñoz, José Antonio Real|2020|ACS Applied Materials and Interfaces|12|29461|doi:10.1021/acsami.0c05733

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[tetrakis(mu-cyano)-bis(isoquinoline)-iron(ii)-platinum(ii)]Experimental 3D Coordinates
researchProduct

CCDC 2018388: Experimental Crystal Structure Determination

2020

Related Article: Rubén Turo-Cortés, Carlos Bartual-Murgui, Javier Castells-Gil, M. Carmen Muñoz, Carlos Martí-Gastaldo, José Antonio Real|2020|Chemical Science|11|11224|doi:10.1039/D0SC04246C

Space GroupCrystallographyCrystal Systemcatena-[octakis(mu-cyano)-tetrakis(5-aminopyrimidine)-di-iron(ii)-di-palladium(ii) methanol solvate]Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2010360: Experimental Crystal Structure Determination

2020

Related Article: Lucía Piñeiro-López, Francisco-Javier Valverde-Muñoz, Elzbieta Trzop, M. Carmen Muñoz, Maksym Seredyuk, Javier Castells-Gil, Iván da Silva, Carlos Martí-Gastaldo, Eric Collet, José Antonio Real|2021|Chemical Science|12|1317|doi:10.1039/D0SC04420B

Space GroupCrystallographyCrystal Systemcatena-(tetrakis(mu-cyano)-(mu-38-phenanthroline)-di-gold-iron nitrobenzene solvate)Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1521584: Experimental Crystal Structure Determination

2016

Related Article: Francisco Javier Valverde-Muñoz, MaksymSeredyuk, M. Carmen Muñoz, Kateryna Znovjyak, IgorO. Fritsky, and José Antonio Real|2016|Inorg.Chem.|55|10654|doi:10.1021/acs.inorgchem.6b01901

catena-[tetrakis(mu-cyano)-bis(2-fluoropyrazine)-iron(ii)-palladium(ii)]Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1585094: Experimental Crystal Structure Determination

2018

Related Article: Daopeng Zhang, Francisco Javier Valverde-Muñoz, Carlos Bartual-Murgui, Lucía Piñeiro-López, M. Carmen Muñoz, José Antonio Real|2018|Inorg.Chem.|57|1562|doi:10.1021/acs.inorgchem.7b02906

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinatescatena-(bis(mu-44'-(ethene-12-diyl)dipyridine)-tetrakis(mu-thiocyanato)-bis(thiocyanato)-iron-di-mercury)
researchProduct

CCDC 2209230: Experimental Crystal Structure Determination

2022

Related Article: Miguel Gavara-Edo, Francisco Javier Valverde-Muñoz, Rosa Córdoba, M. Carmen Muñoz, Javier Herrero-Martín, José Antonio Real, Eugenio Coronado|2022|J.Mater.Chem.C|11|8107|doi:10.1039/D2TC04120K

Space GroupCrystallographybis(dihydrogen bis(pyrazolyl)borate)-(55'66'-tetrahydro-4H4'H-22'-bi-13-thiazine)-ironCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 987530: Experimental Crystal Structure Determination

2015

Related Article: Daniel Aravena, Zulema Arcís Castillo, M. Carmen Muñoz, Ana B. Gaspar, Ko Yoneda, Ryo Ohtani, Akio Mishima, Susumu Kitagawa, Masaaki Ohba, José Antonio Real, Eliseo Ruiz|2014|Chem.-Eur.J.|20|12864|doi:10.1002/chem.201402292

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-(tetrakis(mu2-Cyano-CN)-(mu2-pyrazine)-iron-platinum pyrrole solvate)Experimental 3D Coordinates
researchProduct

CCDC 1910591: Experimental Crystal Structure Determination

2019

Related Article: Francisco Javier Valverde-Muñoz, Carlos Bartual-Murgui, Lucía Piñeiro-López, M. Carmen Muñoz, José Antonio Real|2019|Inorg.Chem.|58|10038|doi:10.1021/acs.inorgchem.9b01189

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[(mu-N-(pyridin-4-yl)pyridine-4-carboxamide)-tetrakis(mu-cyano)-di-gold(i)-iron(ii)]Experimental 3D Coordinates
researchProduct

CCDC 1585095: Experimental Crystal Structure Determination

2018

Related Article: Daopeng Zhang, Francisco Javier Valverde-Muñoz, Carlos Bartual-Murgui, Lucía Piñeiro-López, M. Carmen Muñoz, José Antonio Real|2018|Inorg.Chem.|57|1562|doi:10.1021/acs.inorgchem.7b02906

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-(bis(mu-44'-(hydrazine-12-diylidenedimethylylidene)dipyridine)-tetrakis(mu-thiocyanato)-bis(thiocyanato)-iron-di-mercury methanol solvate)Experimental 3D Coordinates
researchProduct

CCDC 1970080: Experimental Crystal Structure Determination

2020

Related Article: Céline Mariette, Elzbieta Trzop, Jean-Yves Mevellec, Abdou Boucekkine, Aziz Ghoufi, Guillaume Maurin, Eric Collet, M. Carmen Muñoz, José Antonio Real, Bertrand Toudic|2020|Physical Review B: covering condensed matter and materials physics|101|134103|doi:10.1103/PhysRevB.101.134103

Space GroupCrystallographyCrystal Systemcatena-[bis(mu-44'-(ethene-12-diyl)dipyridine)-bis(isothiocyanato)-iron(ii) benzaldehyde solvate]Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2209233: Experimental Crystal Structure Determination

2022

Related Article: Miguel Gavara-Edo, Francisco Javier Valverde-Muñoz, Rosa Córdoba, M. Carmen Muñoz, Javier Herrero-Martín, José Antonio Real, Eugenio Coronado|2022|J.Mater.Chem.C|11|8107|doi:10.1039/D2TC04120K

Space GroupCrystallographybis(dihydrogen bis(pyrazolyl)borate)-(3-(pyridin-2-yl)[123]triazolo[15-a]pyridine)-iron acetonitrile solvateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1965271: Experimental Crystal Structure Determination

2020

Related Article: Manuel Meneses-Sánchez, Lucía Piñeiro-López, Teresa Delgado, Carlos Bartual-Murgui, M. Carmen Muñoz, Pradip Chakraborty, José Antonio Real|2020|J.Mater.Chem.C|8|1623|doi:10.1039/C9TC06422B

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-((mu-44'-(anthracene-910-diyl)dipyridine)-tetrakis(mu-cyano)-di-gold-iron)Experimental 3D Coordinates
researchProduct

CCDC 1550083: Experimental Crystal Structure Determination

2017

Related Article: Lucı́a Piñeiro-López, Francisco Javier Valverde-Muñoz, Maksym Seredyuk, M. Carmen Muñoz, Matti Haukka, and José Antonio Real|2017|Inorg.Chem.|56|7038|doi:10.1021/acs.inorgchem.7b00639

Space GroupCrystallographycatena-[bis(mu-44'-(buta-13-diyne-14-diyl)dipyridine)-octakis(mu-cyano)-di-iron-di-palladium tetrakis(naphthalene)]Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1989162: Experimental Crystal Structure Determination

2020

Related Article: Carlos Bartual-Murgui, Víctor Rubio-Giménez, Manuel Meneses-Sánchez, Francisco Javier Valverde-Muñoz, Sergio Tatay, Carlos Martí-Gastaldo, M. Carmen Muñoz, José Antonio Real|2020|ACS Applied Materials and Interfaces|12|29461|doi:10.1021/acsami.0c05733

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-(tetrakis(mu-cyano)-bis(isoquinoline)-iron-palladium)Experimental 3D Coordinates
researchProduct

CCDC 987531: Experimental Crystal Structure Determination

2015

Related Article: Daniel Aravena, Zulema Arcís Castillo, M. Carmen Muñoz, Ana B. Gaspar, Ko Yoneda, Ryo Ohtani, Akio Mishima, Susumu Kitagawa, Masaaki Ohba, José Antonio Real, Eliseo Ruiz|2014|Chem.-Eur.J.|20|12864|doi:10.1002/chem.201402292

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-(tetrakis(mu2-Cyano-CN)-(mu2-pyrazine)-iron-platinum pyrrole solvate)Experimental 3D Coordinates
researchProduct

CCDC 2010362: Experimental Crystal Structure Determination

2020

Related Article: Lucía Piñeiro-López, Francisco-Javier Valverde-Muñoz, Elzbieta Trzop, M. Carmen Muñoz, Maksym Seredyuk, Javier Castells-Gil, Iván da Silva, Carlos Martí-Gastaldo, Eric Collet, José Antonio Real|2021|Chemical Science|12|1317|doi:10.1039/D0SC04420B

catena-(octakis(mu-cyano)-bis(mu-38-phenanthroline)-tetra-gold-di-iron nitrobenzene solvate)Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1894403: Experimental Crystal Structure Determination

2019

Related Article: Wenlong Lan, Francisco Javier Valverde-Muñoz, Xiaoyun Hao, Yong Dou, M. Carmen Muñoz, Zhen Zhou, Hui Liu, Qingyun Liu, José Antonio Real, Daopeng Zhang|2019|Chem.Commun.|55|4607|doi:10.1039/C9CC01291E

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[tetrakis(mu-selenocyanidato)-(mu-44'-(ethane-12-diyl)dipyridine)-iron-mercury unknown solvate]Experimental 3D Coordinates
researchProduct

CCDC 2010366: Experimental Crystal Structure Determination

2020

Related Article: Lucía Piñeiro-López, Francisco-Javier Valverde-Muñoz, Elzbieta Trzop, M. Carmen Muñoz, Maksym Seredyuk, Javier Castells-Gil, Iván da Silva, Carlos Martí-Gastaldo, Eric Collet, José Antonio Real|2021|Chemical Science|12|1317|doi:10.1039/D0SC04420B

Space GroupCrystallographyCrystal Systemcatena-(tetrakis(mu-cyano)-(mu-38-phenanthroline)-di-gold-iron nitrobenzene solvate)Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1965270: Experimental Crystal Structure Determination

2020

Related Article: Manuel Meneses-Sánchez, Lucía Piñeiro-López, Teresa Delgado, Carlos Bartual-Murgui, M. Carmen Muñoz, Pradip Chakraborty, José Antonio Real|2020|J.Mater.Chem.C|8|1623|doi:10.1039/C9TC06422B

Space GroupCrystallographyCrystal Systemcatena-(bis(mu-44'-(anthracene-910-diyl)dipyridine)-octakis(mu-cyano)-di-iron-tetra-gold)Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1550074: Experimental Crystal Structure Determination

2017

Related Article: Lucı́a Piñeiro-López, Francisco Javier Valverde-Muñoz, Maksym Seredyuk, M. Carmen Muñoz, Matti Haukka, and José Antonio Real|2017|Inorg.Chem.|56|7038|doi:10.1021/acs.inorgchem.7b00639

Space GroupCrystallographyCrystal SystemCrystal Structurecatena-[(mu-44'-(buta-13-diyne-14-diyl)dipyridine)-tetrakis(mu-cyano)-iron-di-silver]Cell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1862017: Experimental Crystal Structure Determination

2018

Related Article: Teresa Delgado, Manuel Meneses-Sánchez, Lucía Piñeiro-López, Carlos Bartual-Murgui, M. Carmen Muñoz, José Antonio Real|2018|Chemical Science|9|8446|doi:10.1039/C8SC02677G

Space GroupCrystallographyCrystal Systemcatena-[bis(mu-44'-(14-phenylene)dipyridine)-octakis(mu-cyano)-tetra-gold-di-zinc bis(pyrene)]Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 904080: Experimental Crystal Structure Determination

2013

Related Article: Zulema Arcís-Castillo, M. Carmen Muñoz, Gábor Molnár, Azzedine Bousseksou, José Antonio Real|2013|Chem.-Eur.J.|19|6851|doi:10.1002/chem.201203559

Space GroupCrystallographycatena-[bis(mu3-246-tris(4-pyridyl)-135-triazine)-dodecakis(mu2-cyano)-hexa-silver-tri-iron dichloromethane solvate]Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1572179: Experimental Crystal Structure Determination

2017

Related Article: Carlos Bartual-Murgui, Lucía Piñeiro-López, F. Javier Valverde-Muñoz, M. Carmen Muñoz, Maksym Seredyuk, José Antonio Real|2017|Inorg.Chem.|56|13535|doi:10.1021/acs.inorgchem.7b02272

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters(N1N2-bis(quinolin-8-yl)ethane-12-diamine)-bis(selenocyanato)-iron(ii)Experimental 3D Coordinates
researchProduct

CCDC 1572178: Experimental Crystal Structure Determination

2017

Related Article: Carlos Bartual-Murgui, Lucía Piñeiro-López, F. Javier Valverde-Muñoz, M. Carmen Muñoz, Maksym Seredyuk, José Antonio Real|2017|Inorg.Chem.|56|13535|doi:10.1021/acs.inorgchem.7b02272

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters(N1N2-bis(quinolin-8-yl)ethane-12-diamine)-bis(isothiocyanato)-ironExperimental 3D Coordinates
researchProduct

CCDC 1857201: Experimental Crystal Structure Determination

2018

Related Article: Teresa Delgado, Antoine Tissot, Laure Guénée, Andreas Hauser, Francisco Javier Valverde-Muñoz, Maksym Seredyuk, José Antonio Real, Sébastien Pillet, El-Eulmi Bendeif, Céline Besnard|2018|J.Am.Chem.Soc.|140|12870|doi:10.1021/jacs.8b06042

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters(NNN-tris(2-(((1-butyl-1H-imidazol-2-yl)methylidene)amino)ethyl)amine)-iron(ii) bis(hexafluorophosphate)Experimental 3D Coordinates
researchProduct

CCDC 1439487: Experimental Crystal Structure Determination

2016

Related Article: Rosa Adam, Rafael Ballesteros-Garrido, Sacramento Ferrer, Belén Abarca, Rafael Ballesteros, José Antonio Real, M. Carmen Muñoz|2016|CrystEngComm|18|7950|doi:10.1039/C6CE01540A

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersbis(66'-bis([123]triazolo[15-a]pyridin-3-yl)-22'-bipyridine)-iron bis(tetraphenylborate) dichloromethane solvateExperimental 3D Coordinates
researchProduct

CCDC 1989158: Experimental Crystal Structure Determination

2020

Related Article: Carlos Bartual-Murgui, Víctor Rubio-Giménez, Manuel Meneses-Sánchez, Francisco Javier Valverde-Muñoz, Sergio Tatay, Carlos Martí-Gastaldo, M. Carmen Muñoz, José Antonio Real|2020|ACS Applied Materials and Interfaces|12|29461|doi:10.1021/acsami.0c05733

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-(tetrakis(mu-cyano)-bis(pyrimidine)-iron-palladium monohydrate)Experimental 3D Coordinates
researchProduct

CCDC 1550078: Experimental Crystal Structure Determination

2017

Related Article: Lucı́a Piñeiro-López, Francisco Javier Valverde-Muñoz, Maksym Seredyuk, M. Carmen Muñoz, Matti Haukka, and José Antonio Real|2017|Inorg.Chem.|56|7038|doi:10.1021/acs.inorgchem.7b00639

Space GroupCrystallographycatena-[bis(mu-44'-(buta-13-diyne-14-diyl)dipyridine)-octakis(mu-cyano)-di-iron-di-palladium tetrakis(naphthalene)]Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2018382: Experimental Crystal Structure Determination

2020

Related Article: Rubén Turo-Cortés, Carlos Bartual-Murgui, Javier Castells-Gil, M. Carmen Muñoz, Carlos Martí-Gastaldo, José Antonio Real|2020|Chemical Science|11|11224|doi:10.1039/D0SC04246C

Space GroupCrystallographyCrystal SystemCrystal Structurecatena-[tetrakis(mu-cyano)-bis(pyrimidin-5-amine)-platinum(ii)-iron(ii)]Cell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2018383: Experimental Crystal Structure Determination

2020

Related Article: Rubén Turo-Cortés, Carlos Bartual-Murgui, Javier Castells-Gil, M. Carmen Muñoz, Carlos Martí-Gastaldo, José Antonio Real|2020|Chemical Science|11|11224|doi:10.1039/D0SC04246C

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[octakis(mu-cyano)-tetrakis(5-aminopyrimidine)-di-iron(ii)-di-platinum(ii) hydrate]Experimental 3D Coordinates
researchProduct

CCDC 1970083: Experimental Crystal Structure Determination

2020

Related Article: Céline Mariette, Elzbieta Trzop, Jean-Yves Mevellec, Abdou Boucekkine, Aziz Ghoufi, Guillaume Maurin, Eric Collet, M. Carmen Muñoz, José Antonio Real, Bertrand Toudic|2020|Physical Review B: covering condensed matter and materials physics|101|134103|doi:10.1103/PhysRevB.101.134103

Space GroupCrystallographyCrystal Systemcatena-[bis(mu-44'-(ethene-12-diyl)dipyridine)-bis(isothiocyanato)-iron(ii) benzaldehyde solvate]Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2018387: Experimental Crystal Structure Determination

2020

Related Article: Rubén Turo-Cortés, Carlos Bartual-Murgui, Javier Castells-Gil, M. Carmen Muñoz, Carlos Martí-Gastaldo, José Antonio Real|2020|Chemical Science|11|11224|doi:10.1039/D0SC04246C

Space GroupCrystallographycatena-[octakis(mu-cyano)-tetrakis(5-aminopyrimidine)-di-iron(ii)-di-platinum(ii) ethanol solvate]Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1894401: Experimental Crystal Structure Determination

2019

Related Article: Wenlong Lan, Francisco Javier Valverde-Muñoz, Xiaoyun Hao, Yong Dou, M. Carmen Muñoz, Zhen Zhou, Hui Liu, Qingyun Liu, José Antonio Real, Daopeng Zhang|2019|Chem.Commun.|55|4607|doi:10.1039/C9CC01291E

Space GroupCrystallographycatena-[tetrakis(thiocyanato)-(mu-44'-(ethane-12-diyl)dipyridine)-iron-mercury unknown solvate]Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1585093: Experimental Crystal Structure Determination

2018

Related Article: Daopeng Zhang, Francisco Javier Valverde-Muñoz, Carlos Bartual-Murgui, Lucía Piñeiro-López, M. Carmen Muñoz, José Antonio Real|2018|Inorg.Chem.|57|1562|doi:10.1021/acs.inorgchem.7b02906

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinatescatena-(bis(mu-44'-(ethene-12-diyl)dipyridine)-tetrakis(mu-thiocyanato)-bis(thiocyanato)-iron-di-mercury)
researchProduct

CCDC 1917754: Experimental Crystal Structure Determination

2019

Related Article: Víctor García-López, Mario Palacios-Corella, Verónica Gironés-Pérez, Carlos Bartual-Murgui, José Antonio Real, Eric Pellegrin, Javier Herrero-Martín, Guillem Aromí, Miguel Clemente-León, Eugenio Coronado|2019|Inorg.Chem.|58|12199|doi:10.1021/acs.inorgchem.9b01526

[26-bis(1H-pyrazol-1-yl)pyridine-4-carboxylic acid]-[ethyl 26-bis(1H-pyrazol-1-yl)pyridine-4-carboxylate]-iron bis(perchlorate) acetone solvateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1550076: Experimental Crystal Structure Determination

2017

Related Article: Lucı́a Piñeiro-López, Francisco Javier Valverde-Muñoz, Maksym Seredyuk, M. Carmen Muñoz, Matti Haukka, and José Antonio Real|2017|Inorg.Chem.|56|7038|doi:10.1021/acs.inorgchem.7b00639

Space GroupCrystallographycatena-[bis(mu-44'-(buta-13-diyne-14-diyl)dipyridine)-octakis(mu-cyano)-di-iron-di-nickel tetrakis(naphthalene)]Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1550081: Experimental Crystal Structure Determination

2017

Related Article: Lucı́a Piñeiro-López, Francisco Javier Valverde-Muñoz, Maksym Seredyuk, M. Carmen Muñoz, Matti Haukka, and José Antonio Real|2017|Inorg.Chem.|56|7038|doi:10.1021/acs.inorgchem.7b00639

Space GroupCrystallographyCrystal Systemcatena-[bis(mu-44'-(buta-13-diyne-14-diyl)dipyridine)-octakis(mu-cyano)-di-iron-di-nickel nitrobenzene solvate]Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1847353: Experimental Crystal Structure Determination

2018

Related Article: Teresa Delgado, Manuel Meneses-Sánchez, Lucía Piñeiro-López, Carlos Bartual-Murgui, M. Carmen Muñoz, José Antonio Real|2018|Chemical Science|9|8446|doi:10.1039/C8SC02677G

Space GroupCrystallographyCrystal Systemcatena-[bis(mu-44'-(14-phenylene)dipyridine)-octakis(mu-cyano)-tetra-gold-di-zinc bis(pyrene)]Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1970082: Experimental Crystal Structure Determination

2020

Related Article: Céline Mariette, Elzbieta Trzop, Jean-Yves Mevellec, Abdou Boucekkine, Aziz Ghoufi, Guillaume Maurin, Eric Collet, M. Carmen Muñoz, José Antonio Real, Bertrand Toudic|2020|Physical Review B: covering condensed matter and materials physics|101|134103|doi:10.1103/PhysRevB.101.134103

Space GroupCrystallographyCrystal Systemcatena-[bis(mu-44'-(ethene-12-diyl)dipyridine)-bis(isothiocyanato)-iron(ii) benzaldehyde solvate]Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1848626: Experimental Crystal Structure Determination

2018

Related Article: Teresa Delgado, Antoine Tissot, Laure Guénée, Andreas Hauser, Francisco Javier Valverde-Muñoz, Maksym Seredyuk, José Antonio Real, Sébastien Pillet, El-Eulmi Bendeif, Céline Besnard|2018|J.Am.Chem.Soc.|140|12870|doi:10.1021/jacs.8b06042

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters(NNN-tris(2-(((1-butyl-1H-imidazol-2-yl)methylidene)amino)ethyl)amine)-iron(ii) bis(hexafluorophosphate)Experimental 3D Coordinates
researchProduct

CCDC 2010364: Experimental Crystal Structure Determination

2020

Related Article: Lucía Piñeiro-López, Francisco-Javier Valverde-Muñoz, Elzbieta Trzop, M. Carmen Muñoz, Maksym Seredyuk, Javier Castells-Gil, Iván da Silva, Carlos Martí-Gastaldo, Eric Collet, José Antonio Real|2021|Chemical Science|12|1317|doi:10.1039/D0SC04420B

Space GroupCrystallographyCrystal Systemcatena-(tetrakis(mu-cyano)-(mu-38-phenanthroline)-di-gold-iron nitrobenzene solvate)Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1550073: Experimental Crystal Structure Determination

2017

Related Article: Lucı́a Piñeiro-López, Francisco Javier Valverde-Muñoz, Maksym Seredyuk, M. Carmen Muñoz, Matti Haukka, and José Antonio Real|2017|Inorg.Chem.|56|7038|doi:10.1021/acs.inorgchem.7b00639

Space GroupCrystallographyCrystal SystemCrystal Structurecatena-[(mu-44'-(buta-13-diyne-14-diyl)dipyridine)-tetrakis(mu-cyano)-iron-di-silver]Cell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2018385: Experimental Crystal Structure Determination

2020

Related Article: Rubén Turo-Cortés, Carlos Bartual-Murgui, Javier Castells-Gil, M. Carmen Muñoz, Carlos Martí-Gastaldo, José Antonio Real|2020|Chemical Science|11|11224|doi:10.1039/D0SC04246C

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[octakis(mu-cyano)-tetrakis(5-aminopyrimidine)-di-iron(ii)-di-platinum(ii) hydrate]Experimental 3D Coordinates
researchProduct

CCDC 2209232: Experimental Crystal Structure Determination

2022

Related Article: Miguel Gavara-Edo, Francisco Javier Valverde-Muñoz, Rosa Córdoba, M. Carmen Muñoz, Javier Herrero-Martín, José Antonio Real, Eugenio Coronado|2022|J.Mater.Chem.C|11|8107|doi:10.1039/D2TC04120K

Space GroupCrystallographybis(dihydrogen bis(pyrazolyl)borate)-(3-(pyridin-2-yl)[123]triazolo[15-a]pyridine)-iron acetonitrile solvateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1521588: Experimental Crystal Structure Determination

2016

Related Article: Francisco Javier Valverde-Muñoz, MaksymSeredyuk, M. Carmen Muñoz, Kateryna Znovjyak, IgorO. Fritsky, and José Antonio Real|2016|Inorg.Chem.|55|10654|doi:10.1021/acs.inorgchem.6b01901

Space GroupCrystallographyCrystal SystemCrystal Structurecatena-[tetrakis(mu-cyano)-(mu-2-fluoropyrazine)-iron-platinum hemihydrate]Cell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1439488: Experimental Crystal Structure Determination

2016

Related Article: Rosa Adam, Rafael Ballesteros-Garrido, Sacramento Ferrer, Belén Abarca, Rafael Ballesteros, José Antonio Real, M. Carmen Muñoz|2016|CrystEngComm|18|7950|doi:10.1039/C6CE01540A

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersbis(3-(6-(5-bromopyrimidin-4-yl)pyridin-2-yl)[123]triazolo[15-a]pyridine)-iron bis(trifluoromethanesulfonate) hydrateExperimental 3D Coordinates
researchProduct

CCDC 1848629: Experimental Crystal Structure Determination

2018

Related Article: Teresa Delgado, Antoine Tissot, Laure Guénée, Andreas Hauser, Francisco Javier Valverde-Muñoz, Maksym Seredyuk, José Antonio Real, Sébastien Pillet, El-Eulmi Bendeif, Céline Besnard|2018|J.Am.Chem.Soc.|140|12870|doi:10.1021/jacs.8b06042

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters(NNN-tris(2-(((1-butyl-1H-imidazol-2-yl)methylidene)amino)ethyl)amine)-iron(ii) bis(hexafluorophosphate)Experimental 3D Coordinates
researchProduct

CCDC 1917750: Experimental Crystal Structure Determination

2019

Related Article: Víctor García-López, Mario Palacios-Corella, Verónica Gironés-Pérez, Carlos Bartual-Murgui, José Antonio Real, Eric Pellegrin, Javier Herrero-Martín, Guillem Aromí, Miguel Clemente-León, Eugenio Coronado|2019|Inorg.Chem.|58|12199|doi:10.1021/acs.inorgchem.9b01526

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters{26-bis[5-([11'-biphenyl]-4-yl)-1H-pyrazol-3-yl]pyridine}-[26-bis(1H-pyrazol-1-yl)pyridine-4-carboxylic acid]-iron(ii) bis(perchlorate) acetone diethyl ether solvateExperimental 3D Coordinates
researchProduct

CCDC 904081: Experimental Crystal Structure Determination

2013

Related Article: Zulema Arcís-Castillo, M. Carmen Muñoz, Gábor Molnár, Azzedine Bousseksou, José Antonio Real|2013|Chem.-Eur.J.|19|6851|doi:10.1002/chem.201203559

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[bis(mu3-246-tris(4-pyridyl)-135-triazine)-dodecakis(mu2-cyano)-tri-iron-hexa-silver methanol solvate]Experimental 3D Coordinates
researchProduct

CCDC 904079: Experimental Crystal Structure Determination

2013

Related Article: Zulema Arcís-Castillo, M. Carmen Muñoz, Gábor Molnár, Azzedine Bousseksou, José Antonio Real|2013|Chem.-Eur.J.|19|6851|doi:10.1002/chem.201203559

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinatescatena-[bis(mu3-246-tris(4-pyridyl)-135-triazine)-dodecakis(mu2-cyano)-tri-iron-hexa-silver]
researchProduct

CCDC 2018393: Experimental Crystal Structure Determination

2020

Related Article: Rubén Turo-Cortés, Carlos Bartual-Murgui, Javier Castells-Gil, M. Carmen Muñoz, Carlos Martí-Gastaldo, José Antonio Real|2020|Chemical Science|11|11224|doi:10.1039/D0SC04246C

Space GroupCrystallographyCrystal Systemcatena-[octakis(mu-cyano)-tetrakis(5-aminopyrimidine)-di-iron(ii)-di-palladium(ii) methanol solvate]Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1917751: Experimental Crystal Structure Determination

2019

Related Article: Víctor García-López, Mario Palacios-Corella, Verónica Gironés-Pérez, Carlos Bartual-Murgui, José Antonio Real, Eric Pellegrin, Javier Herrero-Martín, Guillem Aromí, Miguel Clemente-León, Eugenio Coronado|2019|Inorg.Chem.|58|12199|doi:10.1021/acs.inorgchem.9b01526

{26-bis[5-([11'-biphenyl]-4-yl)-1H-pyrazol-3-yl]pyridine}-[26-bis(1H-pyrazol-1-yl)pyridine-4-carboxylic acid]-iron bis(perchlorate) acetone solvateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1550077: Experimental Crystal Structure Determination

2017

Related Article: Lucı́a Piñeiro-López, Francisco Javier Valverde-Muñoz, Maksym Seredyuk, M. Carmen Muñoz, Matti Haukka, and José Antonio Real|2017|Inorg.Chem.|56|7038|doi:10.1021/acs.inorgchem.7b00639

Space GroupCrystallographycatena-[bis(mu-44'-(buta-13-diyne-14-diyl)dipyridine)-octakis(mu-cyano)-di-iron-di-palladium tetrakis(naphthalene)]Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1848627: Experimental Crystal Structure Determination

2018

Related Article: Teresa Delgado, Antoine Tissot, Laure Guénée, Andreas Hauser, Francisco Javier Valverde-Muñoz, Maksym Seredyuk, José Antonio Real, Sébastien Pillet, El-Eulmi Bendeif, Céline Besnard|2018|J.Am.Chem.Soc.|140|12870|doi:10.1021/jacs.8b06042

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters(NNN-tris(2-(((1-butyl-1H-imidazol-2-yl)methylidene)amino)ethyl)amine)-iron(ii) bis(hexafluorophosphate)Experimental 3D Coordinates
researchProduct

CCDC 2018378: Experimental Crystal Structure Determination

2020

Related Article: Rubén Turo-Cortés, Carlos Bartual-Murgui, Javier Castells-Gil, M. Carmen Muñoz, Carlos Martí-Gastaldo, José Antonio Real|2020|Chemical Science|11|11224|doi:10.1039/D0SC04246C

Space GroupCrystallographyCrystal SystemCrystal Structurecatena-[tetrakis(mu-cyano)-bis(pyrimidin-5-amine)-palladium(ii)-iron(ii)]Cell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1550079: Experimental Crystal Structure Determination

2017

Related Article: Lucı́a Piñeiro-López, Francisco Javier Valverde-Muñoz, Maksym Seredyuk, M. Carmen Muñoz, Matti Haukka, and José Antonio Real|2017|Inorg.Chem.|56|7038|doi:10.1021/acs.inorgchem.7b00639

Space GroupCrystallographyCrystal Systemcatena-[bis(mu-44'-(buta-13-diyne-14-diyl)dipyridine)-octakis(mu-cyano)-di-iron-di-palladium nitrobenzene solvate]Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1550082: Experimental Crystal Structure Determination

2017

Related Article: Lucı́a Piñeiro-López, Francisco Javier Valverde-Muñoz, Maksym Seredyuk, M. Carmen Muñoz, Matti Haukka, and José Antonio Real|2017|Inorg.Chem.|56|7038|doi:10.1021/acs.inorgchem.7b00639

Space GroupCrystallographyCrystal Systemcatena-[bis(mu-44'-(buta-13-diyne-14-diyl)dipyridine)-octakis(mu-cyano)-di-iron-di-nickel nitrobenzene solvate]Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2209229: Experimental Crystal Structure Determination

2022

Related Article: Miguel Gavara-Edo, Francisco Javier Valverde-Muñoz, Rosa Córdoba, M. Carmen Muñoz, Javier Herrero-Martín, José Antonio Real, Eugenio Coronado|2022|J.Mater.Chem.C|11|8107|doi:10.1039/D2TC04120K

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersbis(dihydrogen bis(pyrazolyl)borate)-(44'55'-tetrahydro-22'-bi-13-thiazole)-ironExperimental 3D Coordinates
researchProduct