6533b85afe1ef96bd12b9722
RESEARCH PRODUCT
Spin crossover star-shaped metallomesogens of iron(II).
Maksym SeredukJosé Antonio RealVadim KsenofontovYury G. GalyametdinovM. Carmen MuñozPhilipp Gütlichsubject
Phase transitionTHERMAL-BEHAVIORSpin statesMOSSBAUER-SPECTROSCOPYLIQUID-CRYSTALLINE PROPERTIESCalorimetryCOMPLEX-COMPOUNDSSERIESMAGNETIC-SUSCEPTIBILITYMagnetic susceptibilityPOLYMORPHISMInorganic ChemistryCrystalchemistry.chemical_compoundCrystallographyROOM-TEMPERATUREchemistrySpin crossoverFISICA APLICADAMössbauer spectroscopyPHASE-TRANSITIONImidazolePhysical and Theoretical ChemistryTHERMAL-BEHAVIOR; SYSTEMSYSTEMdescription
Three new types of spin crossover (SCO) metallomesogens of Fe-II based on symmetric tripod ligands and their magnetic and structural properties are reported here. These were obtained by condensation of tris(2-aminoethyl)-amin (tren) with the aldehyde derived from 3-alkoxy-6-methylpyridine (mpyN, N (number of carbon atoms in n-alkyl chains) = 8, 18), 1-alkyl-1H-imidazole (imN, N = 4, 16, 18, 20, 22), or 1-alkyl-1H-benzimidazole (bimN, N = 6, 14, 16, 18, 20). A complex derived from 1-octadecyl-1H-naphtho[2,3-d]imidazole (nim18) retains the high spin state at any temperature. Single crystals of the short-chain complexes were investigated by a combination of X-ray crystallography, magnetic measurements and Mossbauer spectroscopy. Generally, in comparison with the short-chain complexes the long-chain complexes display more gradual SCO and undergo a phase transition crystal-liquid crystal that is reflected in their magnetic properties. Characterization by X-ray powder diffractometry and differential calorimetry reveal formation of a smectic mesophase upon melting.
year | journal | country | edition | language |
---|---|---|---|---|
2014-08-01 | Inorganic chemistry |