0000000000020138

AUTHOR

Francisco Javier Valverde-muñoz

0000-0003-3578-5445

showing 109 related works from this author

Influence of Host-Guest and Host-Host Interactions on the Spin-Crossover 3D Hofmann-type Clathrates {FeII(pina)[MI(CN)2]2·xMeOH (MI = Ag, Au)

2019

[EN] The synthesis, structural characterization and magnetic properties of two new isostructural porous 3D compounds with the general formula {FeII(pina)[MI(CN)2]2}·xMeOH (x = 0¿5; pina = N-(pyridin-4-yl)isonicotinamide; MI = AgI and x ~ 5 (1·xMeOH); MI = AuI and x ~ 5 (2·xMeOH)) are presented. The single-crystal X-ray diffraction analyses have revealed that the structure of 1·xMeOH (or 2·xMeOH) presents two equivalent doubly interpenetrated 3D frameworks stabilized by both argentophilic (or aurophilic) interactions and interligand C¿O···HC H-bonds. Despite the interpenetration of the networks, these compounds display accessible void volume capable of hosting up to five molecules of methano…

Hydrogen bondInorganic ChemistrySolventCrystallographychemistry.chemical_compoundchemistrySpin crossoverDesorptionFISICA APLICADAMoleculeIsonicotinamideMethanolPhysical and Theoretical ChemistryIsostructural
researchProduct

Metal-Controlled Magnetoresistance at Room Temperature in Single-Molecule Devices

2017

The appropriate choice of the transition metal complex and metal surface electronic structure opens the possibility to control the spin of the charge carriers through the resulting hybrid molecule/metal spinterface in a single-molecule electrical contact at room temperature. The single-molecule conductance of a Au/molecule/Ni junction can be switched by flipping the magnetization direction of the ferromagnetic electrode. The requirements of the molecule include not just the presence of unpaired electrons: the electronic configuration of the metal center has to provide occupied or empty orbitals that strongly interact with the junction metal electrodes and that are close in energy to their F…

Magnetoresistance02 engineering and technologyElectronic structure010402 general chemistry01 natural sciencesBiochemistryCatalysisMetal L-edgesymbols.namesakeColloid and Surface ChemistryTransition metalMagnetoresistènciaSurface statesDensity functionalsCondensed matter physicsChemistryMagnetoresistanceFermi levelTeoria del funcional de densitatGeneral ChemistryEspintrònicaSpintronics021001 nanoscience & nanotechnology0104 chemical sciencesFerromagnetismsymbolsCondensed Matter::Strongly Correlated ElectronsElectron configuration0210 nano-technology
researchProduct

Spin crossover in iron(II) complexes with ferrocene-bearing triazole-pyridine ligands.

2015

In the search for new multifunctional spin crossover molecular materials, here we describe the synthesis, crystal structures and magnetic and photomagnetic properties of the complexes trans-[Fe(Fctzpy)2(NCX)2]·CHCl3 where Fc-tzpy is the ferrocene-appended ligand 4-(2-pyridyl)-1H-1,2,3-triazol- 1-ylferrocene, X = S (1) and X = Se (2). Both complexes display thermal- and light-induced (LIESST) spin crossover properties characterised by T1/2 = 85 and 168 K, ΔS = 55 and 66 J K−1 mol−1 , ΔH = 4.7 and 11.1 kJ mol−1 and TLIESST = 47 K and 39 K for 1 and 2 respectively. The crystal structure of 1 and 2 measured at 275 K is consistent with the iron(II) ion in the high-spin state while the crystal st…

ChemistryLigandTriazoleCrystal structureLIESSTPyridine ligandIonInorganic Chemistrychemistry.chemical_compoundCrystallographyNuclear magnetic resonanceFerroceneSpin crossoverFISICA APLICADADalton transactions (Cambridge, England : 2003)
researchProduct

Guest induced reversible on–off switching of elastic frustration in a 3D spin crossover coordination polymer with room temperature hysteretic behavio…

2021

A binary reversible switch between low-temperature multi-step spin crossover (SCO), through the evolution of the population γHS(T) with high-spin (HS)-low-spin (LS) sequence: HS1LS0 (state 1) ↔ HS2/3LS1/3 (state 2) ↔ HS1/2LS1/2 (state 3) ↔ HS1/3LS2/3 (state 4) ↔ HS0LS1 (state 5), and complete one step hysteretic spin transition featuring 20 K wide thermal hysteresis centred at 290 K occurs in the three-dimensional (3D) Hofmann-type porous coordination polymer {FeII(3,8phen)[Au(CN)2]2}·xPhNO2 (3,8phen = 3,8-phenanthroline, PhNO2 = nitrobenzene), made up of two identical interpenetrated pcu-type frameworks. The included PhNO2 guest (x = 1, 1·PhNO2) acts as a molecular wedge between the interp…

Materials scienceSpin statesCoordination polymermedia_common.quotation_subjectPopulationSpin transitionFrustration010402 general chemistry01 natural scienceschemistry.chemical_compoundSpin crossoverMetastability[CHIM.CRIS]Chemical Sciences/CristallographySymmetry breakingeducationComputingMilieux_MISCELLANEOUSmedia_common[PHYS]Physics [physics]education.field_of_studyCondensed matter physics010405 organic chemistryGeneral Chemistry0104 chemical sciencesChemistrychemistry[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]
researchProduct

Very Long-Lived Photogenerated High-Spin Phase of a Multistable Spin-Crossover Molecular Material

2018

The spin-crossover compound [Fe(n-Bu-im)3(tren)](PF6)2 shows an unusual long relaxation time of 20 h after light-induced excited spin state trapping when irradiating at 80 K. This is more than 40 times longer than when irradiating at 10 K. Optical absorption spectroscopy, magnetometry, and X-ray diffraction using synchrotron radiation were used to characterize and explain the different relaxation behaviors of this compound after irradiation below and above 70 K. Rearrangement of the butyl chains of the ligands occurring during the relaxation after irradiation above 70 K is thought to be responsible for the unusually long relaxation time at this temperature.

Spin statesAbsorption spectroscopy010405 organic chemistryChemistryRelaxation (NMR)General Chemistry[CHIM.MATE]Chemical Sciences/Material chemistry[CHIM.INOR]Chemical Sciences/Inorganic chemistry010402 general chemistry01 natural sciencesBiochemistryMolecular physicsCatalysis0104 chemical sciencesColloid and Surface ChemistrySpin crossoverPhase (matter)Excited state[CHIM.COOR]Chemical Sciences/Coordination chemistryIrradiationSpin (physics)ComputingMilieux_MISCELLANEOUSJournal of the American Chemical Society
researchProduct

Innenrücktitelbild: First Step Towards a Devil's Staircase in Spin-Crossover Materials (Angew. Chem. 30/2016)

2016

Materials scienceCondensed matter physicsSpin crossover02 engineering and technologyGeneral Medicine010402 general chemistry021001 nanoscience & nanotechnology0210 nano-technology01 natural sciences0104 chemical sciencesAngewandte Chemie
researchProduct

A thermal- and light-induced switchable one-dimensional rare loop-like spin crossover coordination polymer

2019

Rare loop-like isostructural one-dimensional coordination polymer (1D-CP) systems formulated as {Fe(DPIP)2(NCSe)2}n·4DMF (1) and {Fe(DPIP)2(NCSe)2}n·4DMF (2) were obtained by self-assembling FeII and pseudohalide NCX−(X = S, Se) ions in presence of the V-shaped bidentate bridging ligand, namely, N,N′-dipyridin-4-ylisophthalamide (DPIP), and were characterized by elemental analysis, IR spectroscopy, TGA, single crystal X-ray diffraction and powder X-ray diffraction. The magnetic studies show that complex 2 undergoes a complete thermally induced spin crossover (SCO) behavior centered at T1/2 = 120 K with ca. 5 K thermal hysteresis loop and light-induced excited spin state trapping effect (LIE…

Ligand field theoryMaterials scienceSpin states010405 organic chemistryHydrogen bondCoordination polymerBridging ligand010402 general chemistry01 natural sciencesLIESST0104 chemical sciencesInorganic ChemistryCrystallographychemistry.chemical_compoundchemistrySpin crossoverIntramolecular forceDalton Transactions
researchProduct

Guest Induced Strong Cooperative One- and Two-Step Spin Transitions in Highly Porous Iron(II) Hofmann-Type Metal-Organic Frameworks.

2017

[EN] The synthesis, crystal structure, magnetic, calorimetric, and Mo¿ ssbauer studies of a series of new Hofmann-type spin crossover (SCO) metal¿organic frameworks (MOFs) is reported. The new SCO-MOFs arise from self-assembly of FeII, bis(4-pyridyl)butadiyne (bpb), and [Ag(CN)2] ¿ or [MII(CN)4] 2¿ (MII = Ni, Pd). Interpenetration of four identical 3D networks with ¿-Po topology are obtained for {Fe(bpb)[AgI (CN)2]2} due to the length of the rod-like bismonodentate bpb and [Ag(CN)2] ¿ ligands. The four networks are tightly packed and organized in two subsets orthogonally interpenetrated, while the networks in each subset display parallel interpenetration. This nonporous material undergoes a…

Hofmann-type coordination polymers010405 organic chemistryStereochemistryCrystal structure010402 general chemistry01 natural sciences0104 chemical sciencesInorganic ChemistryNitrobenzenechemistry.chemical_compoundCrystallographychemistrySpin crossoverFISICA APLICADAHighly porousMössbauer spectroscopyMoleculePhysical and Theoretical ChemistrySpin (physics)Porous mediumta116Inorganic chemistry
researchProduct

Inside Back Cover: First Step Towards a Devil's Staircase in Spin-Crossover Materials (Angew. Chem. Int. Ed. 30/2016)

2016

International audience; Periodic and aperiodic spin-state concentration waves form during “Devil's staircase”-type spin-crossover in a new bimetallic 2D coordination polymer {Fe[(Hg(SCN)3)2](4,4′-bipy)2}n. In their Communication on page 8675 ff., J. A. Real, E. Collet et al. describe the appearance of spin-state concentration waves between long-range spatially ordered structures of low- and high-spin states during multistep spin-crossover.

[PHYS]Physics [physics]Phase transitionCondensed matter physics010405 organic chemistryChemistryCoordination polymerNanotechnologyGeneral Chemistry010402 general chemistry01 natural sciencesCatalysis0104 chemical scienceschemistry.chemical_compoundAperiodic graphSpin crossoverCondensed Matter::Strongly Correlated ElectronsCover (algebra)Bimetallic strip
researchProduct

Pressure Tunable Electronic Bistability in Fe(II) Hofmann-like Two-Dimensional Coordination Polymer [Fe(Fpz)2Pt(CN)4]: A Comprehensive Experimental a…

2021

A comprehensive experimental and theoretical study of both thermal-induced spin transition (TIST) as a function of pressure and pressure-induced spin transition (PIST) at room temperature for the two-dimensional Hofmann-like SCO polymer [Fe(Fpz)2Pt(CN)4] is reported. The TIST studies at different fixed pressures have been carried out by magnetic susceptibility measurements, while PIST studies have been performed by means of powder X-ray diffraction, Raman, and visible spectroscopies. A combination of the theory of elastic interactions and numerical Monte Carlo simulations has been used for the analysis of the cooperative interactions in TIST and PIST studies. A complete (T, P) phase diagram…

Phase transitionCondensed matter physicsPhononChemistrySpin transitionMagnetic susceptibilityInorganic Chemistrysymbols.namesakeHysteresisMetastabilitysymbolsPhysical and Theoretical ChemistryRaman spectroscopyPhase diagramInorganic Chemistry
researchProduct

Formation of local spin-state concentration waves during the relaxation from photoinduced state in a spin-crossover polymer

2017

The complex relaxation from the photoinduced high-spin phase (PIHS) to the low-spin phase of the bimetallic two-dimensional coordination spin-crossover polymer [Fe[(Hg(SCN)3)2](4,4′-bipy)2]nis reported. During the thermal relaxation, commensurate and incommensurate spin-state concentration waves (SSCWs) form. However, contrary to the steps forming at thermal equilibrium, associated with long-range SSCW order, the SSCWs forming during the relaxation from the PIHS phase correspond to short-range order, revealed by diffuse X-ray scattering. This is interpreted as resulting from the competition between the two types of SSCW order and another structural symmetry breaking, due to ligand ordering,…

Phase transitionSymmetry breaking 2Spin states02 engineering and technology010402 general chemistry01 natural sciencesSpin crossoverPhase (matter)Materials ChemistryOrganic chemistrySymmetry breakingPhase transitionThermal equilibriumAperiodicityChemistryScatteringMetals and Alloys021001 nanoscience & nanotechnologyAtomic and Molecular Physics and OpticsPhoto-crystallography0104 chemical sciencesElectronic Optical and Magnetic Materials[CHIM.POLY]Chemical Sciences/PolymersChemical physics[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]Relaxation (physics)Condensed Matter::Strongly Correlated Electrons0210 nano-technology
researchProduct

An unprecedented hetero-bimetallic three-dimensional spin crossover coordination polymer based on the tetrahedral [Hg(SeCN)4]2− building block

2019

[EN] Self-assembly of octahedral FeII ions, trans-1,2-bis(4-pyridyl) ethane (bpe) bridging ligands and [Hg(XCN)(4)](2-) (X = S (1), Se (2)) tetrahedral building blocks has afforded a new type of hetero-bimetallic Hg-II-Fe-II spin-crossover (SCO) 3D 6,4-connected coordination polymer (CP) formulated {Fe(bpe)[Hg(XCN)(4)]}(n). For X = S (1), the ligand field is close to the crossing point but 1 remains paramagnetic over all temperatures. In contrast, for X = Se (2) the complex undergoes complete thermal induced SCO behaviour centred at T-1/2 = 107.8 K and complete photoconversion of the low spin state into a metastable high-spin state (LIESST effect) with T-LIESST = 66.7 K. The current results…

Ligand field theoryMaterials scienceSpin statesCoordination polymerCrystal structureMagnetic-Properties010402 general chemistry01 natural sciencesCatalysisLIESSTParamagnetismchemistry.chemical_compoundSpin crossoverPressureMaterials ChemistrySpectroscopic investigationsPolynuclear complexesCrystal-StructureBehavior010405 organic chemistryMetals and AlloysGeneral Chemistry0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsCrystallographyOctahedronchemistryFISICA APLICADATransitionX-RayCeramics and CompositesHg(Scn)(4)(2-) UnitStateChemical Communications
researchProduct

Bistable Hofmann-Type FeII Spin-Crossover Two-Dimensional Polymers of 4-Alkyldisulfanylpyridine for Prospective Grafting of Monolayers on Metallic Su…

2021

Aiming at investigating the suitability of Hofmann-type two-dimensional (2D) coordination polymers {FeII(Lax)2[MII(CN)4]} to be processed as single monolayers and probed as spin crossover (SCO) junctions in spintronic devices, the synthesis and characterization of the MII derivatives (MII = Pd and Pt) with sulfur-rich axial ligands (Lax = 4-methyl- and 4-ethyl-disulfanylpyridine) have been conducted. The thermal dependence of the magnetic and calorimetric properties confirmed the occurrence of strong cooperative SCO behavior in the temperature interval of 100-225 K, featuring hysteresis loops 44 and 32.5 K/21 K wide for PtII-methyl and PtII/PdII-ethyl derivatives, while the PdII-methyl deri…

chemistry.chemical_classificationSpintronics010405 organic chemistryChemistrymedia_common.quotation_subjectFrustrationPolymer010402 general chemistry01 natural sciences0104 chemical sciencesInorganic ChemistryMetalHysteresisCrystallographySpin crossovervisual_artExcited stateMonolayervisual_art.visual_art_mediumPhysical and Theoretical Chemistrymedia_commonInorganic Chemistry
researchProduct

Discrimination between two memory channels by molecular alloying in a doubly bistable spin crossover material

2019

[EN] A multistable spin crossover (SCO) molecular alloy system [Fe1-xMx(nBu-im)(3)(tren)](P1-yAsyF6)(2) (M = Zn-II, Ni-II; (nBu-im)(3)(tren) = tris(n-butyl-imidazol(2-ethylamino))amine) has been synthesized and characterized. By controlling the composition of this isomorphous series, two cooperative thermally induced SCO events featuring distinct critical temperatures (T-c) and hysteresis widths (Delta T-c, memory) can be selected at will. The pristine derivative 100As (x = 0, y = 1) displays a strong cooperative two-step SCO and two reversible structural phase transitions (PTs). The low temperature PTLT and the SCO occur synchronously involving conformational changes of the ligand's n-buty…

Materials science010405 organic chemistryLigandHydrostatic pressureKineticsGeneral Chemistry010402 general chemistry01 natural sciences0104 chemical sciencesCrystallographyHysteresischemistry.chemical_compoundChemistrychemistrySpin crossoverIsomorphous substitutionFISICA APLICADASingle crystalDerivative (chemistry)Chemical Science
researchProduct

Synthesis of Nanocrystals and Particle Size Effects Studies on the Thermally Induced Spin Transition of the Model Spin Crossover Compound [Fe(phen)2(…

2015

Surfactant-free nanocrystals of the model spin-crossover compound [Fe(phen)2(NCS)2] (phen: 1,10-phenanthroline) have been synthesized applying the reverse micelle technique. The morphology of the nanocrystals, characterized by scanning electronic microscopy, corresponds to rhombohedric platelets with dimensions ranging from 203 × 203 × 106 nm to 142 × 142 × 74 nm. Variation of the concentration of the Fe(BF4)2·6H2O salt in the synthesis has been found to have little influence on the crystallite size. In contrast, the solvent-surfactant ratio (ω) is critical for a good particle growth. The spin transition of the nanocrystals has been characterized by magnetic susceptibility measurements and …

Inorganic ChemistryNuclear magnetic resonanceNanocrystalSpin crossoverChemistryMössbauer spectroscopySpin transitionAnalytical chemistryCrystalliteParticle sizePhysical and Theoretical ChemistryMicelleMagnetic susceptibilityInorganic chemistry
researchProduct

Strong Cooperative Spin Crossover in 2D and 3D FeII −MI,II HofmannLike Coordination Polymers Based on 2‑Fluoropyrazine

2016

Self-assembling iron(II), 2-fluoropyrazine (Fpz), and [MII(CN)4] 2− (MII = Ni, Pd, Pt) or [AuI (CN)2] − building blocks have afforded a new series of two- (2D) and threedimensional (3D) Hofmann-like spin crossover (SCO) coordination polymers with strong cooperative magnetic, calorimetric, and optical properties. The iron(II) ions, lying on inversion centers, define elongated octahedrons equatorially surrounded by four equivalent centrosymmetric μ4-[MII(CN)4]2− groups. The axial positions are occupied by two terminal Fpz ligands affording significantly corrugated 2D layers {Fe(Fpz)2([MII(CN)4]}. The Pt and Pd derivatives undergo thermal- and light-induced SCO characterized by T1/2 temperatur…

chemistry.chemical_classification010405 organic chemistryPolymer010402 general chemistry01 natural sciences0104 chemical sciencesIonInorganic ChemistryCrystallographyNuclear magnetic resonancechemistrySpin crossoverFISICA APLICADAPhysical and Theoretical Chemistry
researchProduct

Downsizing of Nanocrystals While Retaining Bistable Spin Crossover Properties in Three-Dimensional Hofmann-Type {Fe(pz)[Pt(CN)4]}–Iodine Adducts

2021

Mastering nanostructuration of functional materials into electronic devices is presently an essential task in materials science. This is particularly relevant for spin crossover (SCO) compounds, whose properties are extremely sensitive to size reduction. Indeed, the search for materials displaying strong cooperative hysteretic SCO properties operative at the nanoscale close near room temperature is extremely challenging. In this context, we describe here the synthesis and characterization of 20-30 nm surfactant-free nanocrystals of the FeII Hofmann-type polymer {FeII(pz)[PtII,IVIx(CN)4]} (pz = pyrazine), which affords the first example of a robust three-dimensional coordination polymer, sub…

chemistry.chemical_classificationBistabilityPyrazine010405 organic chemistryCoordination polymerContext (language use)Polymer010402 general chemistry01 natural sciences0104 chemical sciencesCharacterization (materials science)Inorganic ChemistryCrystallographychemistry.chemical_compoundchemistryNanocrystalSpin crossoverPhysical and Theoretical ChemistryInorganic Chemistry
researchProduct

Guest Removal and External Pressure Variation Induce Spin Crossover in Halogen-Functionalized 2-D Hofmann Frameworks.

2020

The effect of halogen functionalization on the spin crossover (SCO) properties of a family of 2-D Hofmann framework materials, [FeIIPd(CN)4(thioX)2]·2H2O (X = Cl and Br; thioCl = (E)-1-(5-chlorothiophen-2-yl)-N-(4H-1,2,4-triazol-4-yl)methanimine) and thioBr = (E)-1-(5-bromothiophen-2-yl)-N-(4H-1,2,4-triazol-4-yl)methanimine)), is reported. Inclusion of both the chloro- and bromo-functionalized ligands into the Hofmann-type frameworks (1Cl·2H2O and 2Br·2H2O) results in a blocking of spin-state transitions due to internal chemical pressure effects derived by the collective steric bulk of the halogen atoms and guest molecules. Cooperative one-step SCO transitions are revealed by either guest r…

Steric effects010405 organic chemistryChemistryTransition temperature010402 general chemistry01 natural sciencesMagnetic susceptibility0104 chemical sciencesInorganic ChemistrySolventCrystallographySpin crossoverHalogenMoleculePhysical and Theoretical ChemistrySingle crystalInorganic chemistry
researchProduct

Hexanuclear Cu3O–3Cu triazole-based units as novel core motifs for high nuclearity copper(ii) frameworks

2019

The asymmetric 3,5-disubstituted 1,2,4-triazole ligand H2V (5-amino-3-picolinamido-1,2,4-triazole) by reaction with an excess of Cu(II) perchlorate (Cu : H2V being 12 : 1) has produced a novel hexanuclear {Cu6(m3-O/H)(HV/V)3} fragment, with one triangular Cu3(m3-O/H) group connected to three peripheral single Cu(II) ions through a cis–cis–trans bridging mode of the ligand, which is the building block of the three structures described here: one hexanuclear, [Cu6(m3-O)(HV)3(ClO4)7(H2O)9]$8H2O (1), one dodecanuclear, [Cu12(m3-O)2(V)6(ClO4)5(H2O)18](ClO4)3$6H2O (2), and one tetradecanuclear 1D-polymer, {[Cu14(m3-OH)2(V)6(HV)(ClO4)11(H2O)20](ClO4)2$14H2O}n (3), the last two containing hexanuclea…

ChemistryGeneral Chemical EngineeringTriazolechemistry.chemical_element02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesCopper0104 chemical scienceschemistry.chemical_compoundPerchlorateCrystallographyHexanuclearTriazole0210 nano-technologyCopperRSC Advances
researchProduct

Spin Crossover Metal-Organic Frameworks with Inserted Photoactive Guests: On the Quest to Control the Spin State by Photoisomerization

2021

International audience; Three Hofmann-like metal-organic frameworks {Fe(bpac)[Pt(CN)4]}•G (bpac=1,2-bis(4-pyridyl)acetylene) were synthesized with photoisomerizable guest molecules (G = trans-azobenzene, trans-stilbene or cis-stilbene) and were characterized by elemental analysis, thermogravimetry and powder X-ray diffraction. The insertion of guest molecules and their conformation were inferred from Raman and FTIR spectra and from single-crystal X-ray diffraction and confronted with computational simulation. The magnetic and photomagnetic behaviors of the framework are significantly altered by the different guest molecules and different conformations. On the other hand, photoisomerization …

Materials scienceSpin statesPhotoisomerization02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesInorganic ChemistryThermogravimetryCrystallographychemistry.chemical_compoundsymbols.namesakeAcetylenechemistrySpin crossoversymbols[CHIM.CRIS]Chemical Sciences/CristallographyMoleculeMetal-organic framework[CHIM.COOR]Chemical Sciences/Coordination chemistry0210 nano-technologyRaman spectroscopy
researchProduct

Two-step spin crossover behaviour in the chiral one-dimensional coordination polymer [Fe(HAT)(NCS)2]∞

2015

Solvated and unsolvated forms of the complex [Fe(HAT)(NCS)2]∞·(nMeOH) (1) (n = 1.5, 0; HAT = 1,4,5,8,9,12-hexaazatriphenylene) were prepared. The structure of 1·(1.5MeOH), measured at 120 K, showed that this system crystallizes in the homochiral P43 tetragonal space group. The solid is constituted of stacks of one-dimensional coordination polymers running along c-axis. All the FeII centres have the same Λ or Δ conformation and are in the LS state at 120 K. In the range of temperatures 10–300 K the magnetic properties of 1·(1.5MeOH) shows the occurrence of reversible spin crossover behaviour. However, above ca. 310 K complete desolvation of 1·(1.5MeOH) to give 1 was observed from crystal str…

chemistry.chemical_classificationChemistryCoordination polymerGeneral Chemical EngineeringTwo stepEnthalpyGeneral ChemistryCrystal structurePolymerTetragonal crystal systemchemistry.chemical_compoundCrystallographySpin crossoverThermal analysisRSC Advances
researchProduct

Epitaxial Thin-Film vs Single Crystal Growth of 2D Hofmann-Type Iron(II) Materials: A Comparative Assessment of their Bi-Stable Spin Crossover Proper…

2020

Integration of the ON-OFF cooperative spin crossover (SCO) properties of FeII coordination polymers as components of electronic and/or spintronic devices is currently an area of great interest for potential applications. This requires the selection and growth of thin films of the appropriate material onto selected substrates. In this context, two new series of cooperative SCO two-dimensional FeII coordination polymers of the Hofmann-type formulated {FeII(Pym)2[MII(CN)4]·xH2O}n and {FeII(Isoq)2[MII(CN)4]}n (Pym = pyrimidine, Isoq = isoquinoline; MII = Ni, Pd, Pt) have been synthesized, characterized, and the corresponding Pt derivatives selected for fabrication of thin films by liquid-phase …

Materials scienceQuímica organometàl·lica010402 general chemistryEpitaxy01 natural sciencesHofmann-type clathratesspin crossoverSpin crossoverGeneral Materials ScienceHardware_ARITHMETICANDLOGICSTRUCTURESThin filmMaterialschemistry.chemical_classificationSpintronicsSingle crystal growth010405 organic chemistrybusiness.industryepitaxial growthEpitaxial thin filmPolymer0104 chemical sciencescoordination polymersBi stablesize-reduction effectchemistrythin filmsOptoelectronicsbusiness
researchProduct

Switchable Spin-Crossover Hofmann-Type 3D Coordination Polymers Based on Tri- and Tetratopic Ligands

2018

[EN] Fe-II spin-crossover (SCO) coordination polymers of the Hofmann type have become an archetypal class of responsive materials. Almost invariably, the construction of their architectures has been based on the use of monotopic and linear ditopic pyridine like ligands. In the search for new Hofmann-type architectures with SCO properties, here we analyze the possibilities of bridging ligands with higher connectivity degree. More precisely, the synthesis and structure of {Fe-II(L-N3)[M-I(CN)(2)](2)}center dot(Guest) (Guest = nitro-benzene, benzonitrile, o-dichlorobenzene; M-I = Ag, Au) and {Fe-II(L-N4)[Ag-2(CN)(3)][Ag(CN)(2)]}center dot H2O are described, where L-N3 and L-N4 are the tritopic…

chemistry.chemical_classification010405 organic chemistryPolymerType (model theory)010402 general chemistry01 natural sciences0104 chemical sciencesInorganic ChemistryNitrobenzenechemistry.chemical_compoundBenzonitrileCrystallographychemistrySpin crossoverFISICA APLICADAPhysical and Theoretical ChemistryBenzene
researchProduct

Spin Crossover in a Series of Non-Hofmann-Type Fe(II) Coordination Polymers Based on [Hg(SeCN)3]− or [Hg(SeCN)4]2– Building Blocks

2021

Self-assembly of [Hg(SeCN)4]2- tetrahedral building blocks, iron(II) ions, and a series of bis-monodentate pyridyl-type bridging ligands has afforded the new heterobimetallic HgII-FeII coordination polymers {Fe[Hg(SeCN)3]2(4,4'-bipy)2}n (1), {Fe[Hg(SeCN)4](tvp)}n (2), {Fe[Hg(SeCN)3]2(4,4'-azpy)2}n (3), {Fe[Hg(SeCN)4](4,4'-azpy)(MeOH)}n (4), {Fe[Hg(SeCN)4](3,3'-bipy)}n (5) and {Fe[Hg(SeCN)4](3,3'-azpy)}n (6) (4,4-bipy = 4,4'-bipyridine, tvp = trans-1,2-bis(4-pyridyl)ethylene, 4,4'-azpy = 4,4'-azobispyridine, 3,3-bipy = 3,3'-bipyridine, 3,3'-azpy = 3,3'-azobispyridine). Single-crystal X-ray analyses show that compounds 1 and 3 display a two-dimensional robust sheet structure made up of infini…

Inorganic Chemistrychemistry.chemical_classificationBipyridinechemistry.chemical_compoundCrystallographyEthylenechemistrySpin crossoverLigandSheet structurePolymerPhysical and Theoretical ChemistryType (model theory)Inorganic Chemistry
researchProduct

Sublimable complexes with spin switching: chemical design, processing as thin films and integration in graphene-based devices

2023

Among the different types of switchable molecular compounds, sublimable Fe(II) SCO molecules provide a suitable platform to develop smart devices that respond to external stimuli. Here we report the synthesis, crystallographic structure and magnetic properties of three new neutral Fe(II) SCO molecules belonging to the {Fe[H2B(pz)2]2(L)} family with bidentate-alpha-diimine ligands L = 3-(pyridin-2-yl)-[1,2,3]triazolo[1,5-a]pyridine (tzpy), 5,5,6,6-tetrahydro-4H,4H-2,2-bi(1,3-thiazine) (btz) and 4,4,5,5-tetrahydro-2,2-bithiazole (bt) (1, 2 and 3, respectively), as well as two solvated forms of 1 and 3. All three desolvated compounds present thermal- and light-induced SCO transitions with diff…

Condensed Matter - Materials ScienceUNESCO::QUÍMICAMaterials ChemistryMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesGeneral Chemistry
researchProduct

catena-Poly[[diaquabis[1,4-bis(pyridin-4-yl)buta-1,3-diyne-κN]iron(II)]-μ-cyanido-κ2N:C-[dicyanido-κ2C-platinum(II)]-μ-cyanido-κ2C:N]

2017

The molecular structure of the title compound, [FePt(CN)4(C14H8N2)2(H2O)2]n, consists of one-dimensional polymeric [–Fe–NC–Pt(CN)2–CN–]∞chains. Two water molecules and two monodentate 1,4-bis(pyridin-4-yl)buta-1,3-diyne (bpb) ligand molecules complete the octahedral coordination sphere of the FeIIatoms. The Fe—N(py) bond length (py is pyridine) is 2.2700 (15) Å, Fe—N(cyanide) is 2.1185 (16) Å and the Fe—O distance is 2.1275 (14) Å. The water molecules are hydrogen bonded to either bpb ligands or cyanide groups of the planar [Pt(CN)4]2−anion of adjacent polymeric chains. These O—H...N hydrogen bonds, in conjunction with offset and tilted π–π stacking interactions between bpb ligands and cyan…

crystal structureCoordination sphereDenticityLigandHydrogen bondStereochemistryCyanideCrystal structurebitopic bpb ligandhydrogen bonding010402 general chemistry010403 inorganic & nuclear chemistry01 natural sciencesMedicinal chemistry0104 chemical sciencesBond lengthchemistry.chemical_compoundchemistryπ–π stacking interactionsPyridinelcsh:QD901-999lcsh:CrystallographyIUCrData
researchProduct

Cyanido-Bridged FeII-MI Dimetallic Hofmann-Like Spin-Crossover Coordination Polymers Based on 2,6-Naphthyridine

2017

[EN] Two new 3D spin-crossover (SCO) Hofmann-type coordination polymers {Fe(2,6-naphthy)[Ag(CN)2][Ag2(CN)3]} (1; 2,6-naphthy = 2,6-naphthyridine) and {Fe(2,6-naphthy)- [Au(CN)2]2}·0.5PhNO2 (2) were synthesized and characterized. Both derivatives are made up of infinite stacks of {Fe[Ag(CN)2]2- [Ag2(CN)3]}n and {Fe[Au(CN)2]2}n layered grids connected by pillars of 2,6-naphthy ligands coordinated to the axial positions of the FeII centers of alternate layers.

Void (astronomy)SilverStereochemistryIron02 engineering and technology010402 general chemistry01 natural sciencesInorganic ChemistryNitrobenzenechemistry.chemical_compoundN ligandsSpin crossoverMoleculechemistry.chemical_classificationPolymerMetal-organic frameworks021001 nanoscience & nanotechnologySpin crossover0104 chemical sciencesCrystallographychemistryFISICA APLICADAMetal-organic frameworkGold0210 nano-technology
researchProduct

{[Hg(SCN)3]2(n-L)}2-: An Efficient Secondary Building Unit for the Synthesis of 2D Iron(II) Spin-Crossover Coordination Polymers

2018

[EN] We report an unprecedented series of two-dimensional (2D) spin-crossover (SCO) heterobimetallic coordination polymers generically formulated as {Fe-II[(He(SCN)(3))(2)](L)(x))}center dot Solv, where x = 2 for L = tvp (trans-(4,4'-vinylenedipyridine)) (1tvp), bpmh ((1E,2E)-1,2-bis(pyridin-4-ylmethylene)hydrazine) (1bpmh center dot nCH(3)OH; n = 0, 1), by eh ( (1E,2E)-1,2-bis (1-(pyridin-4-yl) ethyliden e) hydrazine) (Ibpeh center dot nH(2)O; n = 0, 1) and x = 2.33 for L = 0 0 bpbz (1,4-bis(pyridin-4-yl)benzene) (1bpbz center dot nH(2)O; n = 0, 2/ 3). The results confirm that self-assembly of Fell, [Hg-II(SCN)(4)](2-), and ditopic rodlike bridging ligands L containing 4-pyridyl moieties f…

ChemistryLigandEnthalpySolvation02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesLIESST0104 chemical sciencesInorganic ChemistrySolventchemistry.chemical_compoundCrystallographySpin crossoverFISICA APLICADAMoleculePhysical and Theoretical Chemistry0210 nano-technologyBenzene
researchProduct

Thermochromic Meltable Materials with Reverse Spin Transition Controlled by Chemical Design

2020

International audience; We report a series of meltable FeII complexes, which, depending on the length of aliphatic chains, display abrupt forward low‐spin to high‐spin transition or unprecedented melting‐triggered reverse high‐spin to low‐spin transition on temperature rise. The reverse spin transition is perfectly reproducible on thermal cycling and the obtained materials are easily processable in the form of thin film owing to their soft‐matter nature. We found that the discovered approach represents a potentially generalizable new avenue to control both the location in temperature and the direction of the spin transition in meltable compounds.

Phase transitionMaterials scienceBistabilitySpin transitionsSpin transition02 engineering and technologyTemperature cycling010402 general chemistry01 natural sciencesCatalysisSpin crossover[CHIM.COOR]Chemical Sciences/Coordination chemistrySoft matterThin filmThermochromismCondensed matter physics010405 organic chemistryReverse spin transitionGeneral MedicineGeneral Chemistry021001 nanoscience & nanotechnologySpin crossover0104 chemical sciencesCondensed Matter::Strongly Correlated ElectronsSoft matter0210 nano-technology
researchProduct

Competing Phases Involving Spin-State and Ligand Structural Orderings in a Multistable Two-Dimensional Spin Crossover Coordination Polymer

2017

[EN] Competition between spin-crossover and structural ligand ordering is identified as responsible for multistability and generation of six different phases in a rigid two-dimensional coordination polymer formulated {Fe-II[Hg-II(SCN)(3)](2) mu-(4,4'-bipy)(2)}(n) (1) (4,4'-bipy = 4,4'-bipyridine). The structure of 1 consists of infinite linear [Fe(mu-4,4'-bipy)](n)(2n+) chains linked by in situ formed {[Hg-II(SCN)(3)](2)(mu-4,4'-bipy)}(2n-) anionic dimers. The thermal dependence of the high-spin fraction, his, features four magnetic phases defined by steps following the sequence gamma(HS) = 1 (phase 1) gamma(HS) = 1/2 (phase 2) gamma(HS) approximate to 1/3 (phase 3) gamma(HS) = 0 (phase 4) …

Spin statesCondensed matter physics010405 organic chemistryLigandChemistryCoordination polymerSpontaneous symmetry breakingGeneral Chemistry010402 general chemistryCondensed Matter Physics01 natural sciences0104 chemical scienceschemistry.chemical_compoundCrystallographySpin crossoverFISICA APLICADAPhase (matter)[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]General Materials ScienceSingle crystalMultistabilityCrystal Growth & Design
researchProduct

CCDC 1521585: Experimental Crystal Structure Determination

2016

Related Article: Francisco Javier Valverde-Muñoz, MaksymSeredyuk, M. Carmen Muñoz, Kateryna Znovjyak, IgorO. Fritsky, and José Antonio Real|2016|Inorg.Chem.|55|10654|doi:10.1021/acs.inorgchem.6b01901

catena-[tetrakis(mu-cyano)-bis(2-fluoropyrazine)-iron(ii)-palladium(ii)]Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1521589: Experimental Crystal Structure Determination

2016

Related Article: Francisco Javier Valverde-Muñoz, MaksymSeredyuk, M. Carmen Muñoz, Kateryna Znovjyak, IgorO. Fritsky, and José Antonio Real|2016|Inorg.Chem.|55|10654|doi:10.1021/acs.inorgchem.6b01901

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[tetrakis(mu-cyano)-(mu-2-fluoropyrazine)-di-gold-iron]Experimental 3D Coordinates
researchProduct

CCDC 1550080: Experimental Crystal Structure Determination

2017

Related Article: Lucı́a Piñeiro-López, Francisco Javier Valverde-Muñoz, Maksym Seredyuk, M. Carmen Muñoz, Matti Haukka, and José Antonio Real|2017|Inorg.Chem.|56|7038|doi:10.1021/acs.inorgchem.7b00639

Space GroupCrystallographyCrystal Systemcatena-[bis(mu-44'-(buta-13-diyne-14-diyl)dipyridine)-octakis(mu-cyano)-di-iron-di-palladium nitrobenzene solvate]Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1417554: Experimental Crystal Structure Determination

2015

Related Article: Tania Romero-Morcillo, Francisco Javier Valverde-Muñoz, Lucía Piñeiro-López, M. Carmen Muñoz, Tomás Romero, Pedro Molina, José A. Real|2015|Dalton Trans.|44|18911|doi:10.1039/C5DT03084F

bis(2-(1-Ferrocenyl-1H-123-triazol-4-yl)pyridine)-bis(isothiocyanato)-iron(ii) chloroform solvateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1521590: Experimental Crystal Structure Determination

2016

Related Article: Francisco Javier Valverde-Muñoz, MaksymSeredyuk, M. Carmen Muñoz, Kateryna Znovjyak, IgorO. Fritsky, and José Antonio Real|2016|Inorg.Chem.|55|10654|doi:10.1021/acs.inorgchem.6b01901

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[tetrakis(mu-cyano)-(mu-2-fluoropyrazine)-di-gold-iron]Experimental 3D Coordinates
researchProduct

CCDC 2042717: Experimental Crystal Structure Determination

2021

Related Article: Barbora Brachňaková, Ján Moncoľ, Ján Pavlik, Ivan Šalitroš, Sébastien Bonhommeau, Francisco Javier Valverde-Muñoz, Lionel Salmon, Gábor Molnár, Lucie Routaboul, Azzedine Bousseksou|2021|Dalton Trans.|50|8877|doi:10.1039/D1DT01057C

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[tetrakis(mu-cyano)-(mu-44'-(ethene-12-diyl)dipyridine)-iron-platinum trans-azobenzene]Experimental 3D Coordinates
researchProduct

CCDC 1852557: Experimental Crystal Structure Determination

2018

Related Article: Francisco Javier Valverde-Muñoz, M. Carmen Muñoz, Sacramento Ferrer, Carlos Bartual-Murgui, José A. Real|2018|Inorg.Chem.|57|12195|doi:10.1021/acs.inorgchem.8b01842

catena-[tetrakis(mu-cyano)-(mu-44'4''-(benzene-135-triyltri(ethyne-21-diyl))tripyridine)-iron(ii)-di-silver(i) nitrobenzene solvate]Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1879899: Experimental Crystal Structure Determination

2019

Related Article: Francisco Javier Valverde-Muñoz, Maksym Seredyuk, Manuel Meneses-Sánchez, M. Carmen Muñoz, Carlos Bartual-Murgui, José A. Real|2019|Chemical Science|10|3807|doi:10.1039/C8SC05256E

Space GroupCrystallographyCrystal System(NNN-tris(2-(((1-n-butyl-1H-imidazol-2-yl)methylidene)amino)ethyl)amine)-iron bis(hexafluoroarsenate hexafluorophosphate)Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1879896: Experimental Crystal Structure Determination

2019

Related Article: Francisco Javier Valverde-Muñoz, Maksym Seredyuk, Manuel Meneses-Sánchez, M. Carmen Muñoz, Carlos Bartual-Murgui, José A. Real|2019|Chemical Science|10|3807|doi:10.1039/C8SC05256E

Space GroupCrystallography(NNN-tris(2-(((1-n-butyl-1H-imidazol-2-yl)methylidene)amino)ethyl)amine)-iron bis(hexafluoroarsenate)Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1521583: Experimental Crystal Structure Determination

2016

Related Article: Francisco Javier Valverde-Muñoz, MaksymSeredyuk, M. Carmen Muñoz, Kateryna Znovjyak, IgorO. Fritsky, and José Antonio Real|2016|Inorg.Chem.|55|10654|doi:10.1021/acs.inorgchem.6b01901

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[tetrakis(mu-cyano)-bis(2-fluoropyrazine)-iron(ii)-nickel(ii)]Experimental 3D Coordinates
researchProduct

CCDC 1897989: Experimental Crystal Structure Determination

2019

Related Article: Wenlong Lan, Francisco Javier Valverde-Muñoz, Yong Dou, Xiaoyun Hao, M. Carmen Muñoz, Zhen Zhou, Hui Liu, Qingyun Liu, José Antonio Real, Daopeng Zhang|2019|Dalton Trans.|48|17014|doi:10.1039/C9DT03285A

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[bis(mu-isoselenocyanato)-bis{mu-N1-(pyridin-4-yl)-N3-(pyridin-4-yl)benzene-13-dicarboxamide}-iron NN-dimethylformamide solvate]Experimental 3D Coordinates
researchProduct

CCDC 1910592: Experimental Crystal Structure Determination

2019

Related Article: Francisco Javier Valverde-Muñoz, Carlos Bartual-Murgui, Lucía Piñeiro-López, M. Carmen Muñoz, José Antonio Real|2019|Inorg.Chem.|58|10038|doi:10.1021/acs.inorgchem.9b01189

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[(mu- N-(pyridin-4-yl)pyridine-4-carboxamide)-tetrakis(mu-cyano)-di-gold(i)-iron(ii) methanol unknown solvate]Experimental 3D Coordinates
researchProduct

CCDC 1879901: Experimental Crystal Structure Determination

2019

Related Article: Francisco Javier Valverde-Muñoz, Maksym Seredyuk, Manuel Meneses-Sánchez, M. Carmen Muñoz, Carlos Bartual-Murgui, José A. Real|2019|Chemical Science|10|3807|doi:10.1039/C8SC05256E

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters(NNN-tris(2-(((1-n-butyl-1H-imidazol-2-yl)methylidene)amino)ethyl)amine)-nickel bis(hexafluorophosphate)Experimental 3D Coordinates
researchProduct

CCDC 1989161: Experimental Crystal Structure Determination

2020

Related Article: Carlos Bartual-Murgui, Víctor Rubio-Giménez, Manuel Meneses-Sánchez, Francisco Javier Valverde-Muñoz, Sergio Tatay, Carlos Martí-Gastaldo, M. Carmen Muñoz, José Antonio Real|2020|ACS Applied Materials and Interfaces|12|29461|doi:10.1021/acsami.0c05733

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-(tetrakis(mu-cyano)-bis(isoquinoline)-iron-palladium)Experimental 3D Coordinates
researchProduct

CCDC 1989160: Experimental Crystal Structure Determination

2020

Related Article: Carlos Bartual-Murgui, Víctor Rubio-Giménez, Manuel Meneses-Sánchez, Francisco Javier Valverde-Muñoz, Sergio Tatay, Carlos Martí-Gastaldo, M. Carmen Muñoz, José Antonio Real|2020|ACS Applied Materials and Interfaces|12|29461|doi:10.1021/acsami.0c05733

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinatescatena-(tetrakis(mu-cyano)-bis(isoquinoline)-iron-nickel)
researchProduct

CCDC 1989157: Experimental Crystal Structure Determination

2020

Related Article: Carlos Bartual-Murgui, Víctor Rubio-Giménez, Manuel Meneses-Sánchez, Francisco Javier Valverde-Muñoz, Sergio Tatay, Carlos Martí-Gastaldo, M. Carmen Muñoz, José Antonio Real|2020|ACS Applied Materials and Interfaces|12|29461|doi:10.1021/acsami.0c05733

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-(tetrakis(mu-cyano)-bis(pyrimidine)-iron-palladium monohydrate)Experimental 3D Coordinates
researchProduct

CCDC 1910990: Experimental Crystal Structure Determination

2020

Related Article: Carlos Bartual-Murgui, Víctor Rubio-Giménez, Manuel Meneses-Sánchez, Francisco Javier Valverde-Muñoz, Sergio Tatay, Carlos Martí-Gastaldo, M. Carmen Muñoz, José Antonio Real|2020|ACS Applied Materials and Interfaces|12|29461|doi:10.1021/acsami.0c05733

catena-(tetrakis(mu-cyano)-bis(isoquinoline)-iron-platinum)Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1879898: Experimental Crystal Structure Determination

2019

Related Article: Francisco Javier Valverde-Muñoz, Maksym Seredyuk, Manuel Meneses-Sánchez, M. Carmen Muñoz, Carlos Bartual-Murgui, José A. Real|2019|Chemical Science|10|3807|doi:10.1039/C8SC05256E

Space GroupCrystallographyCrystal System(NNN-tris(2-(((1-n-butyl-1H-imidazol-2-yl)methylidene)amino)ethyl)amine)-iron bis(hexafluoroarsenate hexafluorophosphate)Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2209231: Experimental Crystal Structure Determination

2022

Related Article: Miguel Gavara-Edo, Francisco Javier Valverde-Muñoz, Rosa Córdoba, M. Carmen Muñoz, Javier Herrero-Martín, José Antonio Real, Eugenio Coronado|2022|J.Mater.Chem.C|11|8107|doi:10.1039/D2TC04120K

Space GroupCrystallographybis(dihydrogen bis(pyrazolyl)borate)-(44'55'-tetrahydro-22'-bi-13-thiazole)-iron dichloromethane solvateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2209228: Experimental Crystal Structure Determination

2022

Related Article: Miguel Gavara-Edo, Francisco Javier Valverde-Muñoz, Rosa Córdoba, M. Carmen Muñoz, Javier Herrero-Martín, José Antonio Real, Eugenio Coronado|2022|J.Mater.Chem.C|11|8107|doi:10.1039/D2TC04120K

Space GroupCrystallographybis(dihydrogen bis(pyrazolyl)borate)-(55'66'-tetrahydro-4H4'H-22'-bi-13-thiazine)-ironCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1852556: Experimental Crystal Structure Determination

2018

Related Article: Francisco Javier Valverde-Muñoz, M. Carmen Muñoz, Sacramento Ferrer, Carlos Bartual-Murgui, José A. Real|2018|Inorg.Chem.|57|12195|doi:10.1021/acs.inorgchem.8b01842

catena-[tetrakis(mu-cyano)-(mu-44'4''-(benzene-135-triyltri(ethyne-21-diyl))tripyridine)-iron(ii)-di-silver(i) nitrobenzene solvate]Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2209227: Experimental Crystal Structure Determination

2022

Related Article: Miguel Gavara-Edo, Francisco Javier Valverde-Muñoz, Rosa Córdoba, M. Carmen Muñoz, Javier Herrero-Martín, José Antonio Real, Eugenio Coronado|2022|J.Mater.Chem.C|11|8107|doi:10.1039/D2TC04120K

Space GroupCrystallographybis(dihydrogen bis(pyrazolyl)borate)-(44'55'-tetrahydro-22'-bi-13-thiazole)-iron dichloromethane solvateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1910594: Experimental Crystal Structure Determination

2019

Related Article: Francisco Javier Valverde-Muñoz, Carlos Bartual-Murgui, Lucía Piñeiro-López, M. Carmen Muñoz, José Antonio Real|2019|Inorg.Chem.|58|10038|doi:10.1021/acs.inorgchem.9b01189

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[tetrakis(mu-cyano)-(mu-N-(pyridin-4-yl)pyridine-4-carboxamide)-iron-di-silver methanol solvate]Experimental 3D Coordinates
researchProduct

CCDC 1521587: Experimental Crystal Structure Determination

2016

Related Article: Francisco Javier Valverde-Muñoz, MaksymSeredyuk, M. Carmen Muñoz, Kateryna Znovjyak, IgorO. Fritsky, and José Antonio Real|2016|Inorg.Chem.|55|10654|doi:10.1021/acs.inorgchem.6b01901

Space GroupCrystallographycatena-[tetrakis(mu-cyano)-bis(2-fluoropyrazine)-iron(ii)-platinum(ii)]Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1989159: Experimental Crystal Structure Determination

2020

Related Article: Carlos Bartual-Murgui, Víctor Rubio-Giménez, Manuel Meneses-Sánchez, Francisco Javier Valverde-Muñoz, Sergio Tatay, Carlos Martí-Gastaldo, M. Carmen Muñoz, José Antonio Real|2020|ACS Applied Materials and Interfaces|12|29461|doi:10.1021/acsami.0c05733

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-(tetrakis(mu-cyano)-(mu-pyrimidine)-(pyrimidine)-iron-nickel)Experimental 3D Coordinates
researchProduct

CCDC 1585097: Experimental Crystal Structure Determination

2018

Related Article: Daopeng Zhang, Francisco Javier Valverde-Muñoz, Carlos Bartual-Murgui, Lucía Piñeiro-López, M. Carmen Muñoz, José Antonio Real|2018|Inorg.Chem.|57|1562|doi:10.1021/acs.inorgchem.7b02906

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-(dodecakis(mu-thiocyanato)-pentakis(mu-44'-(14-phenylene)dipyridine)-bis(44'-(14-phenylene)dipyridine)-hexakis(isothiocyanato)-tri-iron-hexa-mercury dihydrate)Experimental 3D Coordinates
researchProduct

CCDC 1910992: Experimental Crystal Structure Determination

2020

Related Article: Carlos Bartual-Murgui, Víctor Rubio-Giménez, Manuel Meneses-Sánchez, Francisco Javier Valverde-Muñoz, Sergio Tatay, Carlos Martí-Gastaldo, M. Carmen Muñoz, José Antonio Real|2020|ACS Applied Materials and Interfaces|12|29461|doi:10.1021/acsami.0c05733

Space GroupCrystallographycatena-(tetrakis(mu-cyano)-bis(pyrimidine)-iron-platinum hemihydrate)Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1910593: Experimental Crystal Structure Determination

2019

Related Article: Francisco Javier Valverde-Muñoz, Carlos Bartual-Murgui, Lucía Piñeiro-López, M. Carmen Muñoz, José Antonio Real|2019|Inorg.Chem.|58|10038|doi:10.1021/acs.inorgchem.9b01189

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[tetrakis(mu-cyano)-(mu-N-(pyridin-4-yl)pyridine-4-carboxamide)-iron-di-silver]Experimental 3D Coordinates
researchProduct

CCDC 1848631: Experimental Crystal Structure Determination

2018

Related Article: Teresa Delgado, Antoine Tissot, Laure Guénée, Andreas Hauser, Francisco Javier Valverde-Muñoz, Maksym Seredyuk, José Antonio Real, Sébastien Pillet, El-Eulmi Bendeif, Céline Besnard|2018|J.Am.Chem.Soc.|140|12870|doi:10.1021/jacs.8b06042

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters(NNN-tris(2-(((1-butyl-1H-imidazol-2-yl)methylidene)amino)ethyl)amine)-iron(ii) bis(hexafluorophosphate)Experimental 3D Coordinates
researchProduct

CCDC 1852560: Experimental Crystal Structure Determination

2018

Related Article: Francisco Javier Valverde-Muñoz, M. Carmen Muñoz, Sacramento Ferrer, Carlos Bartual-Murgui, José A. Real|2018|Inorg.Chem.|57|12195|doi:10.1021/acs.inorgchem.8b01842

catena-[tetrakis(mu-cyano)-(mu-44'4''-(benzene-135-triyltri(ethyne-21-diyl))tripyridine)-di-gold(i)-iron(ii) nitrobenzene solvate]Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1897988: Experimental Crystal Structure Determination

2019

Related Article: Wenlong Lan, Francisco Javier Valverde-Muñoz, Yong Dou, Xiaoyun Hao, M. Carmen Muñoz, Zhen Zhou, Hui Liu, Qingyun Liu, José Antonio Real, Daopeng Zhang|2019|Dalton Trans.|48|17014|doi:10.1039/C9DT03285A

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[bis(isothiocyanato)-bis{mu-N1-(pyridin-4-yl)-N3-(pyridin-4-yl)benzene-13-dicarboxamide}-iron NN-dimethylformamide solvate]Experimental 3D Coordinates
researchProduct

CCDC 1879900: Experimental Crystal Structure Determination

2019

Related Article: Francisco Javier Valverde-Muñoz, Maksym Seredyuk, Manuel Meneses-Sánchez, M. Carmen Muñoz, Carlos Bartual-Murgui, José A. Real|2019|Chemical Science|10|3807|doi:10.1039/C8SC05256E

Space GroupCrystallographyCrystal System(NNN-tris(2-(((1-n-butyl-1H-imidazol-2-yl)methylidene)amino)ethyl)amine)-iron bis(hexafluoroarsenate hexafluorophosphate)Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1550075: Experimental Crystal Structure Determination

2017

Related Article: Lucı́a Piñeiro-López, Francisco Javier Valverde-Muñoz, Maksym Seredyuk, M. Carmen Muñoz, Matti Haukka, and José Antonio Real|2017|Inorg.Chem.|56|7038|doi:10.1021/acs.inorgchem.7b00639

Space GroupCrystallographycatena-[bis(mu-44'-(buta-13-diyne-14-diyl)dipyridine)-octakis(mu-cyano)-di-iron-di-nickel tetrakis(naphthalene)]Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1935980: Experimental Crystal Structure Determination

2019

Related Article: Sacramento Ferrer, Javier Hernández-Gil, Francisco Javier Valverde-Muñoz, Francisco Lloret, Alfonso Castiñeiras|2019|RSC Advances|9|29357|doi:10.1039/C9RA05922A

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametershexakis(mu-N-(5-amino-124-triazolato-3-yl)pyridine-2-carboxamido)-pentakis(mu-perchlorato)-bis(mu-oxido)-octadeca-aqua-dodeca-copper(ii) triperchlorate unknown solvate hexahydrateExperimental 3D Coordinates
researchProduct

CCDC 1935981: Experimental Crystal Structure Determination

2019

Related Article: Sacramento Ferrer, Javier Hernández-Gil, Francisco Javier Valverde-Muñoz, Francisco Lloret, Alfonso Castiñeiras|2019|RSC Advances|9|29357|doi:10.1039/C9RA05922A

catena-[hexakis(mu-N-(5-amino-124-triazolato-3-yl)pyridine-2-carboxamido)-pentakis(mu-perchlorato)-bis(mu-hydroxo)-(mu-N-(5-amino-4H-124-triazol-3-yl)pyridine-2-carboxamido)-hexakis(perchlorato)-icosa-aqua-tetradeca-copper(ii) diperchlorate tetradecahydrate]Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1585098: Experimental Crystal Structure Determination

2018

Related Article: Daopeng Zhang, Francisco Javier Valverde-Muñoz, Carlos Bartual-Murgui, Lucía Piñeiro-López, M. Carmen Muñoz, José Antonio Real|2018|Inorg.Chem.|57|1562|doi:10.1021/acs.inorgchem.7b02906

Space GroupCrystallographycatena-(octakis(mu-thiocyanato)-bis(33'-bipyridine)-di-iron-di-mercury)Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1417556: Experimental Crystal Structure Determination

2015

Related Article: Tania Romero-Morcillo, Francisco Javier Valverde-Muñoz, Lucía Piñeiro-López, M. Carmen Muñoz, Tomás Romero, Pedro Molina, José A. Real|2015|Dalton Trans.|44|18911|doi:10.1039/C5DT03084F

Space GroupCrystallographybis(2-(1-Ferrocenyl-1H-123-triazol-4-yl)pyridine)-bis(isoselenocyanato)-iron(ii) chloroform solvateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1550084: Experimental Crystal Structure Determination

2017

Related Article: Lucı́a Piñeiro-López, Francisco Javier Valverde-Muñoz, Maksym Seredyuk, M. Carmen Muñoz, Matti Haukka, and José Antonio Real|2017|Inorg.Chem.|56|7038|doi:10.1021/acs.inorgchem.7b00639

Space GroupCrystallographycatena-[bis(mu-44'-(buta-13-diyne-14-diyl)dipyridine)-octakis(mu-cyano)-di-iron-di-nickel tetrakis(naphthalene)]Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1897990: Experimental Crystal Structure Determination

2019

Related Article: Wenlong Lan, Francisco Javier Valverde-Muñoz, Yong Dou, Xiaoyun Hao, M. Carmen Muñoz, Zhen Zhou, Hui Liu, Qingyun Liu, José Antonio Real, Daopeng Zhang|2019|Dalton Trans.|48|17014|doi:10.1039/C9DT03285A

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[bis(mu-isoselenocyanato)-bis(mu-N1-(pyridin-4-yl)-N3-(pyridin-4-yl)benzene-13-dicarboxamide)-iron NN-dimethylformamide solvate]Experimental 3D Coordinates
researchProduct

CCDC 1521586: Experimental Crystal Structure Determination

2016

Related Article: Francisco Javier Valverde-Muñoz, MaksymSeredyuk, M. Carmen Muñoz, Kateryna Znovjyak, IgorO. Fritsky, and José Antonio Real|2016|Inorg.Chem.|55|10654|doi:10.1021/acs.inorgchem.6b01901

Space GroupCrystallographycatena-[tetrakis(mu-cyano)-bis(2-fluoropyrazine)-iron(ii)-platinum(ii)]Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1894402: Experimental Crystal Structure Determination

2019

Related Article: Wenlong Lan, Francisco Javier Valverde-Muñoz, Xiaoyun Hao, Yong Dou, M. Carmen Muñoz, Zhen Zhou, Hui Liu, Qingyun Liu, José Antonio Real, Daopeng Zhang|2019|Chem.Commun.|55|4607|doi:10.1039/C9CC01291E

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[tetrakis(mu-selenocyanidato)-(mu-44'-(ethane-12-diyl)dipyridine)-iron-mercury unknown solvate]Experimental 3D Coordinates
researchProduct

CCDC 1848628: Experimental Crystal Structure Determination

2018

Related Article: Teresa Delgado, Antoine Tissot, Laure Guénée, Andreas Hauser, Francisco Javier Valverde-Muñoz, Maksym Seredyuk, José Antonio Real, Sébastien Pillet, El-Eulmi Bendeif, Céline Besnard|2018|J.Am.Chem.Soc.|140|12870|doi:10.1021/jacs.8b06042

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters(NNN-tris(2-(((1-butyl-1H-imidazol-2-yl)methylidene)amino)ethyl)amine)-iron(ii) bis(hexafluorophosphate)Experimental 3D Coordinates
researchProduct

CCDC 1852559: Experimental Crystal Structure Determination

2018

Related Article: Francisco Javier Valverde-Muñoz, M. Carmen Muñoz, Sacramento Ferrer, Carlos Bartual-Murgui, José A. Real|2018|Inorg.Chem.|57|12195|doi:10.1021/acs.inorgchem.8b01842

catena-[tetrakis(mu-cyano)-(mu-44'4''-(benzene-135-triyltri(ethyne-21-diyl))tripyridine)-di-gold(i)-iron(ii) nitrobenzene solvate]Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1892385: Experimental Crystal Structure Determination

2019

Related Article: Francisco Javier Valverde-Muñoz, Maksym Seredyuk, Manuel Meneses-Sánchez, M. Carmen Muñoz, Carlos Bartual-Murgui, José A. Real|2019|Chemical Science|10|3807|doi:10.1039/C8SC05256E

Space GroupCrystallographyCrystal SystemCrystal Structure(NNN-tris(2-(((1-n-butyl-1H-imidazol-2-yl)methylidene)amino)ethyl)amine)-iron bis(hexafluorophosphate)Cell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1585096: Experimental Crystal Structure Determination

2018

Related Article: Daopeng Zhang, Francisco Javier Valverde-Muñoz, Carlos Bartual-Murgui, Lucía Piñeiro-López, M. Carmen Muñoz, José Antonio Real|2018|Inorg.Chem.|57|1562|doi:10.1021/acs.inorgchem.7b02906

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-(bis(mu-44'-[hydrazine-12-diylidenebis(eth-1-yl-1-ylidene)]dipyridine)-tetrakis(mu-thiocyanato)-bis(thiocyanato)-iron-di-mercury monohydrate)Experimental 3D Coordinates
researchProduct

CCDC 1521584: Experimental Crystal Structure Determination

2016

Related Article: Francisco Javier Valverde-Muñoz, MaksymSeredyuk, M. Carmen Muñoz, Kateryna Znovjyak, IgorO. Fritsky, and José Antonio Real|2016|Inorg.Chem.|55|10654|doi:10.1021/acs.inorgchem.6b01901

catena-[tetrakis(mu-cyano)-bis(2-fluoropyrazine)-iron(ii)-palladium(ii)]Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1417555: Experimental Crystal Structure Determination

2015

Related Article: Tania Romero-Morcillo, Francisco Javier Valverde-Muñoz, Lucía Piñeiro-López, M. Carmen Muñoz, Tomás Romero, Pedro Molina, José A. Real|2015|Dalton Trans.|44|18911|doi:10.1039/C5DT03084F

Space GroupCrystallographybis(2-(1-Ferrocenyl-1H-123-triazol-4-yl)pyridine)-bis(isoselenocyanato)-iron(ii) chloroform solvateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2042716: Experimental Crystal Structure Determination

2021

Related Article: Barbora Brachňaková, Ján Moncoľ, Ján Pavlik, Ivan Šalitroš, Sébastien Bonhommeau, Francisco Javier Valverde-Muñoz, Lionel Salmon, Gábor Molnár, Lucie Routaboul, Azzedine Bousseksou|2021|Dalton Trans.|50|8877|doi:10.1039/D1DT01057C

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[tetrakis(mu-cyano)-(mu-44'-(ethene-12-diyl)dipyridine)-iron-platinum trans-azobenzene]Experimental 3D Coordinates
researchProduct

CCDC 1585094: Experimental Crystal Structure Determination

2018

Related Article: Daopeng Zhang, Francisco Javier Valverde-Muñoz, Carlos Bartual-Murgui, Lucía Piñeiro-López, M. Carmen Muñoz, José Antonio Real|2018|Inorg.Chem.|57|1562|doi:10.1021/acs.inorgchem.7b02906

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinatescatena-(bis(mu-44'-(ethene-12-diyl)dipyridine)-tetrakis(mu-thiocyanato)-bis(thiocyanato)-iron-di-mercury)
researchProduct

CCDC 2209230: Experimental Crystal Structure Determination

2022

Related Article: Miguel Gavara-Edo, Francisco Javier Valverde-Muñoz, Rosa Córdoba, M. Carmen Muñoz, Javier Herrero-Martín, José Antonio Real, Eugenio Coronado|2022|J.Mater.Chem.C|11|8107|doi:10.1039/D2TC04120K

Space GroupCrystallographybis(dihydrogen bis(pyrazolyl)borate)-(55'66'-tetrahydro-4H4'H-22'-bi-13-thiazine)-ironCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1910591: Experimental Crystal Structure Determination

2019

Related Article: Francisco Javier Valverde-Muñoz, Carlos Bartual-Murgui, Lucía Piñeiro-López, M. Carmen Muñoz, José Antonio Real|2019|Inorg.Chem.|58|10038|doi:10.1021/acs.inorgchem.9b01189

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[(mu-N-(pyridin-4-yl)pyridine-4-carboxamide)-tetrakis(mu-cyano)-di-gold(i)-iron(ii)]Experimental 3D Coordinates
researchProduct

CCDC 1585095: Experimental Crystal Structure Determination

2018

Related Article: Daopeng Zhang, Francisco Javier Valverde-Muñoz, Carlos Bartual-Murgui, Lucía Piñeiro-López, M. Carmen Muñoz, José Antonio Real|2018|Inorg.Chem.|57|1562|doi:10.1021/acs.inorgchem.7b02906

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-(bis(mu-44'-(hydrazine-12-diylidenedimethylylidene)dipyridine)-tetrakis(mu-thiocyanato)-bis(thiocyanato)-iron-di-mercury methanol solvate)Experimental 3D Coordinates
researchProduct

CCDC 2209233: Experimental Crystal Structure Determination

2022

Related Article: Miguel Gavara-Edo, Francisco Javier Valverde-Muñoz, Rosa Córdoba, M. Carmen Muñoz, Javier Herrero-Martín, José Antonio Real, Eugenio Coronado|2022|J.Mater.Chem.C|11|8107|doi:10.1039/D2TC04120K

Space GroupCrystallographybis(dihydrogen bis(pyrazolyl)borate)-(3-(pyridin-2-yl)[123]triazolo[15-a]pyridine)-iron acetonitrile solvateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1550083: Experimental Crystal Structure Determination

2017

Related Article: Lucı́a Piñeiro-López, Francisco Javier Valverde-Muñoz, Maksym Seredyuk, M. Carmen Muñoz, Matti Haukka, and José Antonio Real|2017|Inorg.Chem.|56|7038|doi:10.1021/acs.inorgchem.7b00639

Space GroupCrystallographycatena-[bis(mu-44'-(buta-13-diyne-14-diyl)dipyridine)-octakis(mu-cyano)-di-iron-di-palladium tetrakis(naphthalene)]Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1852562: Experimental Crystal Structure Determination

2018

Related Article: Francisco Javier Valverde-Muñoz, M. Carmen Muñoz, Sacramento Ferrer, Carlos Bartual-Murgui, José A. Real|2018|Inorg.Chem.|57|12195|doi:10.1021/acs.inorgchem.8b01842

catena-[pentakis(mu-cyano)-(mu-44'4''4'''-(benzene-1245-tetrayltetra(ethyne-21-diyl))tetrapyridine)-iron(ii)-tri-silver(i) monohydrate]Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1989162: Experimental Crystal Structure Determination

2020

Related Article: Carlos Bartual-Murgui, Víctor Rubio-Giménez, Manuel Meneses-Sánchez, Francisco Javier Valverde-Muñoz, Sergio Tatay, Carlos Martí-Gastaldo, M. Carmen Muñoz, José Antonio Real|2020|ACS Applied Materials and Interfaces|12|29461|doi:10.1021/acsami.0c05733

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-(tetrakis(mu-cyano)-bis(isoquinoline)-iron-palladium)Experimental 3D Coordinates
researchProduct

CCDC 1894403: Experimental Crystal Structure Determination

2019

Related Article: Wenlong Lan, Francisco Javier Valverde-Muñoz, Xiaoyun Hao, Yong Dou, M. Carmen Muñoz, Zhen Zhou, Hui Liu, Qingyun Liu, José Antonio Real, Daopeng Zhang|2019|Chem.Commun.|55|4607|doi:10.1039/C9CC01291E

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[tetrakis(mu-selenocyanidato)-(mu-44'-(ethane-12-diyl)dipyridine)-iron-mercury unknown solvate]Experimental 3D Coordinates
researchProduct

CCDC 1550074: Experimental Crystal Structure Determination

2017

Related Article: Lucı́a Piñeiro-López, Francisco Javier Valverde-Muñoz, Maksym Seredyuk, M. Carmen Muñoz, Matti Haukka, and José Antonio Real|2017|Inorg.Chem.|56|7038|doi:10.1021/acs.inorgchem.7b00639

Space GroupCrystallographyCrystal SystemCrystal Structurecatena-[(mu-44'-(buta-13-diyne-14-diyl)dipyridine)-tetrakis(mu-cyano)-iron-di-silver]Cell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1857201: Experimental Crystal Structure Determination

2018

Related Article: Teresa Delgado, Antoine Tissot, Laure Guénée, Andreas Hauser, Francisco Javier Valverde-Muñoz, Maksym Seredyuk, José Antonio Real, Sébastien Pillet, El-Eulmi Bendeif, Céline Besnard|2018|J.Am.Chem.Soc.|140|12870|doi:10.1021/jacs.8b06042

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters(NNN-tris(2-(((1-butyl-1H-imidazol-2-yl)methylidene)amino)ethyl)amine)-iron(ii) bis(hexafluorophosphate)Experimental 3D Coordinates
researchProduct

CCDC 1989158: Experimental Crystal Structure Determination

2020

Related Article: Carlos Bartual-Murgui, Víctor Rubio-Giménez, Manuel Meneses-Sánchez, Francisco Javier Valverde-Muñoz, Sergio Tatay, Carlos Martí-Gastaldo, M. Carmen Muñoz, José Antonio Real|2020|ACS Applied Materials and Interfaces|12|29461|doi:10.1021/acsami.0c05733

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-(tetrakis(mu-cyano)-bis(pyrimidine)-iron-palladium monohydrate)Experimental 3D Coordinates
researchProduct

CCDC 1550078: Experimental Crystal Structure Determination

2017

Related Article: Lucı́a Piñeiro-López, Francisco Javier Valverde-Muñoz, Maksym Seredyuk, M. Carmen Muñoz, Matti Haukka, and José Antonio Real|2017|Inorg.Chem.|56|7038|doi:10.1021/acs.inorgchem.7b00639

Space GroupCrystallographycatena-[bis(mu-44'-(buta-13-diyne-14-diyl)dipyridine)-octakis(mu-cyano)-di-iron-di-palladium tetrakis(naphthalene)]Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1894401: Experimental Crystal Structure Determination

2019

Related Article: Wenlong Lan, Francisco Javier Valverde-Muñoz, Xiaoyun Hao, Yong Dou, M. Carmen Muñoz, Zhen Zhou, Hui Liu, Qingyun Liu, José Antonio Real, Daopeng Zhang|2019|Chem.Commun.|55|4607|doi:10.1039/C9CC01291E

Space GroupCrystallographycatena-[tetrakis(thiocyanato)-(mu-44'-(ethane-12-diyl)dipyridine)-iron-mercury unknown solvate]Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1852558: Experimental Crystal Structure Determination

2018

Related Article: Francisco Javier Valverde-Muñoz, M. Carmen Muñoz, Sacramento Ferrer, Carlos Bartual-Murgui, José A. Real|2018|Inorg.Chem.|57|12195|doi:10.1021/acs.inorgchem.8b01842

catena-[tetrakis(mu-cyano)-(mu-44'4''-(benzene-135-triyltri(ethyne-21-diyl))tripyridine)-di-gold(i)-iron(ii) nitrobenzene solvate]Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1585093: Experimental Crystal Structure Determination

2018

Related Article: Daopeng Zhang, Francisco Javier Valverde-Muñoz, Carlos Bartual-Murgui, Lucía Piñeiro-López, M. Carmen Muñoz, José Antonio Real|2018|Inorg.Chem.|57|1562|doi:10.1021/acs.inorgchem.7b02906

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinatescatena-(bis(mu-44'-(ethene-12-diyl)dipyridine)-tetrakis(mu-thiocyanato)-bis(thiocyanato)-iron-di-mercury)
researchProduct

CCDC 1935979: Experimental Crystal Structure Determination

2019

Related Article: Sacramento Ferrer, Javier Hernández-Gil, Francisco Javier Valverde-Muñoz, Francisco Lloret, Alfonso Castiñeiras|2019|RSC Advances|9|29357|doi:10.1039/C9RA05922A

Space GroupCrystallographyCrystal SystemCrystal Structuretris(mu-N-(5-amino-4H-124-triazol-3-yl)pyridine-2-carboxamido)-(mu-perchlorato)-(mu-oxido)-hexakis(perchlorato)-nona-aqua-hexa-copper(ii) unknown solvate octahydrateCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1550076: Experimental Crystal Structure Determination

2017

Related Article: Lucı́a Piñeiro-López, Francisco Javier Valverde-Muñoz, Maksym Seredyuk, M. Carmen Muñoz, Matti Haukka, and José Antonio Real|2017|Inorg.Chem.|56|7038|doi:10.1021/acs.inorgchem.7b00639

Space GroupCrystallographycatena-[bis(mu-44'-(buta-13-diyne-14-diyl)dipyridine)-octakis(mu-cyano)-di-iron-di-nickel tetrakis(naphthalene)]Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1550081: Experimental Crystal Structure Determination

2017

Related Article: Lucı́a Piñeiro-López, Francisco Javier Valverde-Muñoz, Maksym Seredyuk, M. Carmen Muñoz, Matti Haukka, and José Antonio Real|2017|Inorg.Chem.|56|7038|doi:10.1021/acs.inorgchem.7b00639

Space GroupCrystallographyCrystal Systemcatena-[bis(mu-44'-(buta-13-diyne-14-diyl)dipyridine)-octakis(mu-cyano)-di-iron-di-nickel nitrobenzene solvate]Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1848626: Experimental Crystal Structure Determination

2018

Related Article: Teresa Delgado, Antoine Tissot, Laure Guénée, Andreas Hauser, Francisco Javier Valverde-Muñoz, Maksym Seredyuk, José Antonio Real, Sébastien Pillet, El-Eulmi Bendeif, Céline Besnard|2018|J.Am.Chem.Soc.|140|12870|doi:10.1021/jacs.8b06042

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters(NNN-tris(2-(((1-butyl-1H-imidazol-2-yl)methylidene)amino)ethyl)amine)-iron(ii) bis(hexafluorophosphate)Experimental 3D Coordinates
researchProduct

CCDC 1550073: Experimental Crystal Structure Determination

2017

Related Article: Lucı́a Piñeiro-López, Francisco Javier Valverde-Muñoz, Maksym Seredyuk, M. Carmen Muñoz, Matti Haukka, and José Antonio Real|2017|Inorg.Chem.|56|7038|doi:10.1021/acs.inorgchem.7b00639

Space GroupCrystallographyCrystal SystemCrystal Structurecatena-[(mu-44'-(buta-13-diyne-14-diyl)dipyridine)-tetrakis(mu-cyano)-iron-di-silver]Cell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2209232: Experimental Crystal Structure Determination

2022

Related Article: Miguel Gavara-Edo, Francisco Javier Valverde-Muñoz, Rosa Córdoba, M. Carmen Muñoz, Javier Herrero-Martín, José Antonio Real, Eugenio Coronado|2022|J.Mater.Chem.C|11|8107|doi:10.1039/D2TC04120K

Space GroupCrystallographybis(dihydrogen bis(pyrazolyl)borate)-(3-(pyridin-2-yl)[123]triazolo[15-a]pyridine)-iron acetonitrile solvateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1521588: Experimental Crystal Structure Determination

2016

Related Article: Francisco Javier Valverde-Muñoz, MaksymSeredyuk, M. Carmen Muñoz, Kateryna Znovjyak, IgorO. Fritsky, and José Antonio Real|2016|Inorg.Chem.|55|10654|doi:10.1021/acs.inorgchem.6b01901

Space GroupCrystallographyCrystal SystemCrystal Structurecatena-[tetrakis(mu-cyano)-(mu-2-fluoropyrazine)-iron-platinum hemihydrate]Cell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1879897: Experimental Crystal Structure Determination

2019

Related Article: Francisco Javier Valverde-Muñoz, Maksym Seredyuk, Manuel Meneses-Sánchez, M. Carmen Muñoz, Carlos Bartual-Murgui, José A. Real|2019|Chemical Science|10|3807|doi:10.1039/C8SC05256E

Space GroupCrystallography(NNN-tris(2-(((1-n-butyl-1H-imidazol-2-yl)methylidene)amino)ethyl)amine)-iron bis(hexafluoroarsenate)Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1848629: Experimental Crystal Structure Determination

2018

Related Article: Teresa Delgado, Antoine Tissot, Laure Guénée, Andreas Hauser, Francisco Javier Valverde-Muñoz, Maksym Seredyuk, José Antonio Real, Sébastien Pillet, El-Eulmi Bendeif, Céline Besnard|2018|J.Am.Chem.Soc.|140|12870|doi:10.1021/jacs.8b06042

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters(NNN-tris(2-(((1-butyl-1H-imidazol-2-yl)methylidene)amino)ethyl)amine)-iron(ii) bis(hexafluorophosphate)Experimental 3D Coordinates
researchProduct

CCDC 1550077: Experimental Crystal Structure Determination

2017

Related Article: Lucı́a Piñeiro-López, Francisco Javier Valverde-Muñoz, Maksym Seredyuk, M. Carmen Muñoz, Matti Haukka, and José Antonio Real|2017|Inorg.Chem.|56|7038|doi:10.1021/acs.inorgchem.7b00639

Space GroupCrystallographycatena-[bis(mu-44'-(buta-13-diyne-14-diyl)dipyridine)-octakis(mu-cyano)-di-iron-di-palladium tetrakis(naphthalene)]Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1848627: Experimental Crystal Structure Determination

2018

Related Article: Teresa Delgado, Antoine Tissot, Laure Guénée, Andreas Hauser, Francisco Javier Valverde-Muñoz, Maksym Seredyuk, José Antonio Real, Sébastien Pillet, El-Eulmi Bendeif, Céline Besnard|2018|J.Am.Chem.Soc.|140|12870|doi:10.1021/jacs.8b06042

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters(NNN-tris(2-(((1-butyl-1H-imidazol-2-yl)methylidene)amino)ethyl)amine)-iron(ii) bis(hexafluorophosphate)Experimental 3D Coordinates
researchProduct

CCDC 1550079: Experimental Crystal Structure Determination

2017

Related Article: Lucı́a Piñeiro-López, Francisco Javier Valverde-Muñoz, Maksym Seredyuk, M. Carmen Muñoz, Matti Haukka, and José Antonio Real|2017|Inorg.Chem.|56|7038|doi:10.1021/acs.inorgchem.7b00639

Space GroupCrystallographyCrystal Systemcatena-[bis(mu-44'-(buta-13-diyne-14-diyl)dipyridine)-octakis(mu-cyano)-di-iron-di-palladium nitrobenzene solvate]Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1550082: Experimental Crystal Structure Determination

2017

Related Article: Lucı́a Piñeiro-López, Francisco Javier Valverde-Muñoz, Maksym Seredyuk, M. Carmen Muñoz, Matti Haukka, and José Antonio Real|2017|Inorg.Chem.|56|7038|doi:10.1021/acs.inorgchem.7b00639

Space GroupCrystallographyCrystal Systemcatena-[bis(mu-44'-(buta-13-diyne-14-diyl)dipyridine)-octakis(mu-cyano)-di-iron-di-nickel nitrobenzene solvate]Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1852561: Experimental Crystal Structure Determination

2018

Related Article: Francisco Javier Valverde-Muñoz, M. Carmen Muñoz, Sacramento Ferrer, Carlos Bartual-Murgui, José A. Real|2018|Inorg.Chem.|57|12195|doi:10.1021/acs.inorgchem.8b01842

catena-[pentakis(mu-cyano)-(mu-44'4''4'''-(benzene-1245-tetrayltetra(ethyne-21-diyl))tetrapyridine)-iron(ii)-tri-silver(i) monohydrate]Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2209229: Experimental Crystal Structure Determination

2022

Related Article: Miguel Gavara-Edo, Francisco Javier Valverde-Muñoz, Rosa Córdoba, M. Carmen Muñoz, Javier Herrero-Martín, José Antonio Real, Eugenio Coronado|2022|J.Mater.Chem.C|11|8107|doi:10.1039/D2TC04120K

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersbis(dihydrogen bis(pyrazolyl)borate)-(44'55'-tetrahydro-22'-bi-13-thiazole)-ironExperimental 3D Coordinates
researchProduct