Search results for "Electronic correlation"

showing 10 items of 100 documents

Explicitly correlated coupled-cluster theory using cusp conditions. I. Perturbation analysis of coupled-cluster singles and doubles (CCSD-F12)

2010

Geminal functions based on Slater-type correlation factors and fixed expansion coefficients, determined by cusp conditions, have in recent years been forwarded as an efficient and numerically stable method for introducing explicit electron correlation into coupled-cluster theory. In this work, we analyze the equations of explicitly correlated coupled-cluster singles and doubles (CCSD-F12) theory and introduce an ordering scheme based on perturbation theory which can be used to characterize and understand the various approximations found in the literature. Numerical results for a test set of 29 molecules support our analysis and give additional insight. In particular, our results help ration…

PhysicsCusp (singularity)Electronic correlationGeminalBasis (linear algebra)General Physics and AstronomyCoupled clusterQuantum mechanicsPhysics::Atomic and Molecular ClustersStatistical physicsPhysics::Chemical PhysicsPhysical and Theoretical ChemistryPerturbation theoryWave functionAnsatzThe Journal of Chemical Physics
researchProduct

Multicomponent density-functional theory for time-dependent systems

2007

We derive the basic formalism of density functional theory for time-dependent electron-nuclear systems. The basic variables of this theory are the electron density in body-fixed frame coordinates and the diagonal of the nuclear N-body density matrix. The body-fixed frame transformation is carried out in order to achieve an electron density that reflects the internal symmetry of the system. We discuss the implications of this body-fixed frame transformation and establish a Runge-Gross-type theorem and derive Kohn-Sham equations for the electrons and nuclei. We illustrate the formalism by performing calculations on a one-dimensional diatomic molecule for which the many-body Schrodinger equati…

PhysicsDensity matrixElectron densityNONEQUILIBRIUM PROCESSESElectronic correlationDiagonalHartreeNUCLEARDiatomic moleculeFIELDSAtomic and Molecular Physics and OpticsSchrödinger equationPOLYATOMIC-MOLECULESMODELsymbols.namesakeClassical mechanicsLASER-PULSEQuantum mechanicsMOTIONSsymbolsSCHRODINGER-EQUATIONDensity functional theoryDOUBLE-IONIZATIONELECTRON CORRELATIONPhysical Review A
researchProduct

PNO-CI and CEPA studies of electron correlation effects

1974

Ab initio calculations of the potential curves of low laying electronic states of OH are performed on the basis of a variational configuration interaction wavefunction (PNO-CI) and the coupled electron pair approximation (CEPA). The latter approach yields a ground state potential curve which deviates from the RKR curve by less than 200 cm−1 in the region from 0.7 to 1.6 A. Calculated ground state constants are as follows (experimental values in parentheses): r e = 0.972 (0.971) A, B e = 18.85 (18.87) cm−1, α e = 0.727 (0.714) cm−1, ω e = 3742 (3739) cm−1, ω e χ e = 85.3 (86.4) cm−1, μ0 = 1.686 (1.66) D, D e = 4.35 (4.63) eV,IP = 12.78 (13.36?) eV, El.Aff. = 1.51 (1.83) eV, v 00(2Π↔2Σ+) = 32…

PhysicsDipoleElectron pairElectronic correlationAb initio quantum chemistry methodsIonizationElectron affinityChiropracticsPhysical and Theoretical ChemistryConfiguration interactionAtomic physicsGround stateTheoretica Chimica Acta
researchProduct

Revised values for the nuclear quadrupole moments ofS33andS35

2014

High-level quantum-chemical calculations are reported for the sulfur electric-field gradients of the CS and SiS molecules. Highly accurate values are obtained in these calculations by using coupled-cluster methods for the treatment of electron correlation together with large atomic-orbital basis sets and by taking into account relativistic effects. The computational results for the sulfur electric-field gradient are used to determine revised values for the $^{33}\mathrm{S}$ and $^{35}\mathrm{S}$ quadrupole moments, thereby taking advantage of available accurate values for the sulfur quadrupole couplings of CS and SiS from the analysis of rotational spectra. The derived values of $\ensuremat…

PhysicsElectronic correlationBasis (linear algebra)Ab initio quantum chemistry methodsQuadrupoleMoleculeAtomic physicsRelativistic quantum chemistryAtomic and Molecular Physics and OpticsSpectral linePhysical Review A
researchProduct

Perturbative treatment of the electron-correlation contribution to the diagonal Born-Oppenheimer correction.

2007

A perturbative scheme for the treatment of electron-correlation effects on the diagonal Born-Oppenheimer correction (DBOC) is suggested. Utilizing the usual Moller-Plesset partitioning of the Hamiltonian formulas for first and second orders (termed as MP1 and MP2) are obtained by expanding the wave function in the corresponding coupled-cluster expressions for the DBOC[J. Gauss et al., J. Chem. Phys. 125, 144111 (2006)]. The obtained expressions are recast in terms of one- and two-particle density matrices in order to take advantage of existing analytic second-derivative implementations for many-body methods. Test calculations show that both MP1 and MP2 recover large fractions (on average 90…

PhysicsElectronic correlationGaussDiagonalBorn–Oppenheimer approximationGeneral Physics and Astronomysymbols.namesakeCoupled clusterQuantum mechanicsPhysics::Atomic and Molecular ClusterssymbolsPerturbation theory (quantum mechanics)Physical and Theoretical ChemistryHamiltonian (quantum mechanics)Wave functionThe Journal of chemical physics
researchProduct

MultiChannel Multiple Scattering Theory for XAFS. Application to L2,3 Edges of Ca

2005

We present a multichannel extension of the multiple scattering method for x-ray absorption fine structure (XAFS) spectroscopy that allows to take account of atomic multiplet-like electron correlation effects in condensed systems, on the basis of ab initio electron structure calculations. The formalism is outlined and an application to near-edge XAFS at the L2,3 edges of Ca metal is presented. In this system, the experimentally observed branching ratio deviates strongly from that obtained from the standard (one-electron) approach to XAFS. This is due to that fact that one-electron theory neglects the multiplet coupling between the photo-electron and the 2p core-hole. Within the multi-channel…

PhysicsElectronic correlationScatteringBranching fractionAb initioElectronAtomic physicsCondensed Matter PhysicsSpectroscopyMultipletMathematical PhysicsAtomic and Molecular Physics and OpticsX-ray absorption fine structurePhysica Scripta
researchProduct

Local correlation functional for electrons in two dimensions

2008

We derive a local approximation for the correlation energy in two-dimensional electronic systems. In the derivation we follow the scheme originally developed by Colle and Salvetti for three dimensions, and consider a Gaussian approximation for the pair density. Then, we introduce an ad-hoc modification which better accounts for both the long-range correlation, and the kinetic-energy contribution to the correlation energy. The resulting functional is local, and depends parametrically on the number of electrons in the system. We apply this functional to the homogeneous electron gas and to a set of two-dimensional quantum dots covering a wide range of electron densities and thus various amount…

PhysicsElectronic correlationStrongly Correlated Electrons (cond-mat.str-el)FOS: Physical sciences02 engineering and technologyElectron021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesElectronic Optical and Magnetic MaterialsRange (mathematics)Condensed Matter - Strongly Correlated ElectronsCorrelation functionQuantum mechanics0103 physical sciencesCorrelation integralDensity functional theoryStatistical physicsLocal-density approximation010306 general physics0210 nano-technologyFermi gas
researchProduct

Colle-Salvetti-type local density functional for the exchange-correlation energy in two dimensions

2010

We derive an approximate local density functional for the exchange-correlation energy to be used in density-functional calculations of two-dimensional systems. In the derivation we employ the Colle-Salvetti wave function within the scheme of Salvetti and Montagnani [Phys. Rev. A 63, 052109 (2001)] to satisfy the sum rule for the exchange-correlation hole. We apply the functional for the two-dimensional homogeneous electron gas as well as to a set of quantum dots and find a very good agreement with exact reference data.

PhysicsElectronic correlationStrongly Correlated Electrons (cond-mat.str-el)Reference data (financial markets)FOS: Physical sciencesType (model theory)Atomic and Molecular Physics and OpticsCondensed Matter - Strongly Correlated ElectronsQuantum dotQuantum mechanicsDensity functional theorySum rule in quantum mechanicsPhysics::Chemical PhysicsWave functionFermi gas
researchProduct

Correlation in the transition-metal-based Heusler compoundsCo2MnSiandCo2FeSi

2006

Half-metallic ferromagnets, such as the Heusler compounds with formula ${X}_{2}YZ$, are expected to show an integer value for the spin magnetic moment. In contrast to experiments, calculations give noninteger values in certain cases where the compounds are based on $X=\mathrm{Co}$. In order to explain deviations of the magnetic moment calculated for such compounds, the dependence of the electronic structure on the lattice parameter was studied theoretically. In the local density approximation (LDA), the minimum total energy of ${\mathrm{Co}}_{2}\mathrm{FeSi}$ is found for the experimental lattice parameter, but the calculated magnetic moment is approximately 12% too low. In addition, half-m…

PhysicsLattice constantCondensed matter physicsMagnetic momentElectronic correlationExchange interactionOrder (ring theory)Condensed Matter::Strongly Correlated ElectronsLocal-density approximationCondensed Matter PhysicsElectron magnetic dipole momentElectronic Optical and Magnetic MaterialsSpin magnetic momentPhysical Review B
researchProduct

X-ray absorption spectra at the CaL2,3edge calculated within multichannel multiple scattering theory

2004

We report a theoretical method for x-ray absorption spectroscopy (XAS) in condensed matter which is based on the multichannel multiple scattering theory of Natoli et al. and the eigen-channel $R$-matrix method. While the highly flexible real-space multiple scattering (RSMS) method guarantees a precise description of the single-electron part of the problem, multiplet-like electron correlation effects between the photoelectron and localized electrons can be taken account for in a configuration interaction scheme. For the case where correlation effects are limited to the absorber atom, a technique for the solution of the equations is devised, which requires only little more computation time th…

PhysicsX-ray absorption spectroscopyAbsorption spectroscopyElectronic correlationScatteringAtomElectronScattering theoryConfiguration interactionAtomic physicsCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsPhysical Review B
researchProduct