Search results for "Electronic density"
showing 10 items of 43 documents
First-principles and semiempirical calculations forFcenters inKNbO3
1997
The linear muffin-tin-orbital method combined with density functional theory (local approximation) and the semiempirical method of the intermediate neglect of the differential overlap (INDO) based on the Hartree-Fock formalism are used for the study of the $F$ centers (O vacancy with two electrons) in cubic and orthorhombic ferroelectric KNbO$_3$ crystals. Calculations for 39-atom supercells show that the two electrons are considerably delocalized even in the ground state of the defect. Their wave functions extend over the two Nb atoms closest to the O vacancy and over other nearby atoms. Thus, the $F$ center in KNbO$_3$ resembles electron defects in the partially-covalent SiO$_2$ crystal (…
The electronic properties of an oxygen vacancy at ZrO2-terminated (001) surfaces of a cubic PbZrO3: computer simulations from the first principles
2008
Combining B3PW hybrid exchange-correlation functional within the density functional theory (DFT) and a supercell model, we calculated from the first principles the electronic structure of both ideal PbZrO(3) (001) surface (with ZrO(2)- and PbO-terminations) and a neutral oxygen vacancy also called the F center. The atomic relaxation and electronic density redistributions are discussed. Thermodynamic analysis of pure surfaces indicates that ZrO(2) termination is energetically more favorable than PbO-termination. The O vacancy on the ZrO(2)-surface attracts approximately 0.3 e (0.7 e in the bulk PbZrO(3)), while the remaining electron density from the missing O(2-) ion is localized mostly on …
The adhesion nature of the Ag/MgO(100) interface: an ab initio study
1998
The atomic and electronic structure of the Ag/MgO(100) interface are calculated by means of the ab initio Hartree-Fock approach combined with a supercell model. The electronic density distribution and the interface binding energy/distance are analyzed for different Ag adsorption positions, slabs of different thicknesses and varying Ag surface coverage. It is demonstrated that the adhesion energy arises mainly due to the electrostatic interaction of substrate atoms with a complicated charge redistribution in the metal layer(s), characterized by large quadrupole moments as well as electron density redistribution towards bridge and hollow positions between the nearest and next-nearest Ag atoms…
Ab initio calculations of the atomic and electronic structure of layered Ba0.5Sr0.5TiO3 structures
2005
Abstract Understanding of the atomic and electronic structure of Ba c Sr 1 − c TiO 3 (BST) solid solutions is important for several applications including the non-volatile ferroelectric memories (dynamic random access memory, DRAM). We present results of ab initio calculations of several spatial arrangements of Ba 0.5 Sr 0.5 TiO 3 solid solutions based on DFT-HF B3PW hybrid method. We calculate the atomic and electronic structure, the effective charges, interatomic bond populations, the electronic density distribution, and densities of states for three layered structures with the same composition. The suggested method reproduces experimental lattice parameters of both pure BaTiO 3 and SrTi…
Increased conductivity of a hole transport layer due to oxidation by a molecular nanomagnet
2008
Thin film transistors based on polyarylamine poly?N,N?-diphenyl-N,N ?bis?4-hexylphenyl?- ?1,1?biphenyl?-4,4?-diamine ?pTPD? were fabricated using spin coating in order to measure the mobility of pTPD upon oxidation. Partially oxidized pTPD with a molecular magnetic cluster showed an increase in mobility of over two orders of magnitude. A transition in the mobility of pTPD upon doping could also be observed by the presence of a maximum obtained for a given oxidant ratio and subsequent decrease for a higher ratio. Such result agrees well with a previously reported model based on the combined effect of dipolar broadening of the density of states and transport manifold filling. Peer Reviewed
First-principles calculations for SrTiO3() surface structure
2002
As a continuation of our recent abinitio calculations of SrTiO 3(1 0 0) surface relaxation for the two different terminations (SrO and TiO2) [Phys. Rev. B 64 (2001) 23417], we analyze here their electronic structures (band structure, density of states, and the electronic density redistribution with emphasis on the covalency effects). We compare results of abinitio Hartree–Fock method with electron correlation corrections and density functional theory with different exchange-correlation functionals, including hybrid (B3PW, B3LYP) exchange techniques. Our results are also compared with previous abinitio plane-wave local density approximation calculations and experiments when availab le. Consi…
A comparative study of the atomic and electronic structure of F centers in ferroelectric KNbO3: Ab initio and semi-empirical calculations
1998
Abstract The linear muffin-tin-orbital method combined with density functional theory (in a local density approximation) and the semi-empirical method of the intermediate neglect of the differential overlap (INDO) based on the Hartree-Fock formalism are used for the supercell study of the F centers (O vacancy with two electrons) in cubic and orthorhombic ferroelectric KNbO3 crystals. The two electrons are found to be considerably delocalized even in the ground state of the defect. Their wave functions extend over the two Nb atoms closest to the O vacancy and over other nearby atoms. Thus, the F center in KNbO3 resembles much more electron defects in the partly covalent SiO2 crystal (the so-…
Challenges in truncating the hierarchy of time-dependent reduced density matrices equations
2012
In this work, we analyze the Born, Bogoliubov, Green, Kirkwood, and Yvon (BBGKY) hierarchy of equations for describing the full time evolution of a many-body fermionic system in terms of its reduced density matrices (at all orders). We provide an exhaustive study of the challenges and open problems linked to the truncation of such a hierarchy of equations to make them practically applicable. We restrict our analysis to the coupled evolution of the one- and two-body reduced density matrices, where higher-order correlation effects are embodied into the approximation used to close the equations. We prove that within this approach, the number of electrons and total energy are conserved, regardl…
Atomic and electronic structure of hydrogen on ZnO (11̄00) surface: ab initio hybrid calculations
2013
Hydrogen atoms unavoidably incorporated into ZnO during growth of bulk samples and thin films considerably affect their electrical conductivity. The results of first principles hybrid LCAO calculations are discussed for hydrogen atoms in the bulk and on the non-polar ZnO (100) surface. The incorporation energy, the atomic relaxation, the electronic density redistribution and the electronic structure modifications are compared for the surface adsorption and bulk interstitial H positions. It is shown that hydrogen has a strong binding with the surface O ions (2.7 eV) whereas its incorporation into bulk is energetically unfavorable. Surface hydrogen atoms are very shallow donors, thus, contrib…
Hydrogen induced metallization of ZnO (11̅00) surface: Ab initio study
2014
Abstract Results of first principles hybrid calculations are presented for hydrogen atoms adsorbed upon non-polar ZnO (1100) surface. The energy of surface atomic relaxation, H adsorption energy, electronic density redistribution and modification of the electronic structure are discussed. It is shown that hydrogen is adsorbed mainly on the surface oxygen ions and forms a strong bonding with them (2.7 eV). Adsorption of hydrogen on the surface zinc ions is energetically unfavorable (− 4.4 eV). It also shown that surface hydrogen atoms are very shallow donors, thus, contributing to the electronic conductivity, and ZnO metallization.