Search results for "Electroporation"

showing 10 items of 51 documents

Improved Extraction Efficiency of Antioxidant Bioactive Compounds from Tetraselmis chuii and Phaedoactylum tricornutum Using Pulsed Electric Fields

2020

Pulsed electric fields (PEF) is a promising technology that allows the selective extraction of high-added value compounds by electroporation. Thus, PEF provides numerous opportunities for the energy efficient isolation of valuable microalgal bioactive substances (i.e., pigments and polyphenols). The efficiency of PEF-assisted extraction combined with aqueous or dimethyl sulfoxide (DMSO) solvents in recovering pigments and polyphenols from microalgae Tetraselmis chuii (T. chuii) and Phaeodactylum tricornutum (P. tricornutum) was evaluated. Two PEF treatments were applied: (1 kV/cm/400 pulses, 3 kV/cm/45 pulses), with a specific energy input of 100 kJ/kg. The total antioxidant capacity (TAC) …

0106 biological sciencesChlorophyll bAntioxidantmedicine.medical_treatmentPharmaceutical ScienceTetraselmis chuii01 natural sciencesPhaeodactylum tricornutumArticleAntioxidantsAnalytical Chemistrylcsh:QD241-441chemistry.chemical_compound0404 agricultural biotechnologylcsh:Organic chemistryChlorophyta010608 biotechnologyDrug DiscoverymedicineMicroalgaePhaeodactylum tricornutum<i>Phaeodactylum tricornutum</i>Physical and Theoretical ChemistryTetraselmis<i>Tetraselmis chuii</i>Carotenoidchemistry.chemical_classificationDiatomsChromatographybiologyChemistryDimethyl sulfoxideOrganic ChemistryExtraction (chemistry)Polyphenols04 agricultural and veterinary sciencesbiology.organism_classification040401 food science6. Clean waterElectroporationpulsed electric fieldsChemistry (miscellaneous)PolyphenolextractionMolecular Medicineantioxidant bioactive compoundsMolecules
researchProduct

Physical Methods of Gene Delivery

2017

Gene therapy can be defined as the use of nucleic acids (NAs) as medicines with the aim of correcting a deficient gene expression, introducing new functions in the cell, repairing mutations and modulating the gene expression. Two main classes of vectors, viral and nonviral, have been used for gene delivery in order to avoid the NAs hydrolysis by tissue nucleases and improve their cellular uptake. The ideal gene delivery vector should offer high transfection efficacy, cell specificity and low toxicity. However, the immunogenic and mutagenic side effects of viral vector as well as toxicity and low efficacy of nonviral carriers are limiting their application. In this respect, naked NAs deliver…

0301 basic medicineChemistryElectroporationGenetic enhancement02 engineering and technologyTransfectionComputational biologyGene delivery021001 nanoscience & nanotechnologyGene gunViral vector03 medical and health sciences030104 developmental biologyMagnetofection0210 nano-technologySonoporation
researchProduct

Electroporation by concentric-type needle electrodes and arrays.

2017

Abstract The efficacy of genomic medicine depends on gene transfer efficiency. In this area, electroporation has been found to be a highly promising method for physical gene transfer. However, electroporation raises issues related to electrical safety, tissue damage, and the number of required wounds. Concentric-type needle electrodes seek to address these issues by using a lower bias (10 V), a single wound, fewer processing steps, and a smaller working area (≈ 10 mm 3 ), thus offering greater accuracy and precision. Moreover, the needle can be arrayed to simultaneously treat several target regions. This paper proposes a novel method using concentric-type needle electrodes to improve the ef…

0301 basic medicineComputer scienceBiophysicsGene transferGene deliveryConcentric03 medical and health sciencesMice0302 clinical medicineTissue damageElectrochemistryGenomic medicineAnimalsPhysical and Theoretical ChemistryElectrodesZebrafishbusiness.industryElectroporationGene Transfer TechniquesGeneral MedicineBiotechnology030104 developmental biologyElectroporationNeedles030220 oncology & carcinogenesisElectrodebusinessBiomedical engineeringBioelectrochemistry (Amsterdam, Netherlands)
researchProduct

Neuronal LRP4 regulates synapse formation in the developing CNS

2017

The low-density lipoprotein receptor-related protein 4 (LRP4) is essential in muscle fibers for the establishment of the neuromuscular junction. Here, we show that LRP4 is also expressed by embryonic cortical and hippocampal neurons, and that downregulation of LRP4 in these neurons causes a reduction in density of synapses and number of primary dendrites. Accordingly, overexpression of LRP4 in cultured neurons had the opposite effect inducing more but shorter primary dendrites with an increased number of spines. Transsynaptic tracing mediated by rabies virus revealed a reduced number of neurons presynaptic to the cortical neurons in which LRP4 was knocked down. Moreover, neuron-specific kno…

0301 basic medicineDendritic spineRabiesSynaptogenesisHippocampusBiologyHippocampal formationHippocampusNeuromuscular junctionGene Knockout TechniquesMice03 medical and health sciences0302 clinical medicinemedicineAnimalsLrp4 ; Central Nervous System Development ; Synapse Formation ; Dendritogenesis ; Transsynaptic Tracing ; Agrin ; In Utero Electroporation ; Psd95 ; Bassoon ; MouseMolecular BiologyCells CulturedLDL-Receptor Related ProteinsCerebral CortexGene knockdownAgrinDendritesCortex (botany)Cell biologyMice Inbred C57BL030104 developmental biologymedicine.anatomical_structureReceptors LDLnervous systemRabies virusSynapsesImmunology030217 neurology & neurosurgeryDevelopmental Biology
researchProduct

NEGR1 and FGFR2 cooperatively regulate cortical development and core behaviours related to autism disorders in mice.

2018

See Contreras and Hippenmeyer (doi:10.1093/brain/awy218) for a scientific commentary on this article. Autism spectrum disorders (ASDs) are complex conditions with diverse aetiologies. Szczurkowska et al. demonstrate that two ASD-related molecules – FGFR2 and Negr1 – physically interact to act on the same downstream pathway, and regulate cortical development and ASD-relevant behaviours in mice. Identifying common mechanisms in ASDs may reveal targets for pharmacological intervention.

0301 basic medicineMAPK/ERK pathwaygenetic structuresAutism Spectrum DisorderFGFR2 signalingFibroblast growth factorReceptor tyrosine kinaseMiceautism; development; cell adhesion; in utero electroporation; FGFR2 signaling0302 clinical medicineCell MovementCerebral CortexMice KnockoutbiologyBehavior AnimalKinaseCell adhesion moleculeCell biologyProtein TransportSignal Transductionmusculoskeletal diseasesMAP Kinase Signaling SystemCell Adhesion Molecules NeuronalDendritic SpinesNeurogenesisautismDown-Regulationbehavioral disciplines and activities03 medical and health sciencesmental disordersmedicineAnimalsHumansAutistic DisorderReceptor Fibroblast Growth Factor Type 2developmentProtein kinase BFibroblast growth factor receptor 2Cell Membranecell adhesionOriginal Articlesin utero electroporationmedicine.diseaseMice Inbred C57BLDisease Models Animal030104 developmental biologyHEK293 Cellsbiology.proteinAutismNeurology (clinical)030217 neurology & neurosurgeryBrain : a journal of neurology
researchProduct

Noninvasive optical diagnostics of enhanced green fluorescent protein expression in skeletal muscle for comparison of electroporation and sonoporatio…

2015

We highlight the options available for noninvasive optical diagnostics of reporter gene expression in mouse tibialis cranialis muscle. An in vivo multispectral imaging technique combined with fluorescence spectroscopy point measurements has been used for the transcutaneous detection of enhanced green fluorescent protein (EGFP) expression, providing information on location and duration of EGFP expression and allowing quantification of EGFP expression levels. For EGFP coding plasmid (pEGFP-Nuc Vector, 10  μg/50  ml 10  μg/50  ml ) transfection, we used electroporation or ultrasound enhanced microbubble cavitation [sonoporation (SP)]. The transcutaneous EGFP fluorescence in live mice was monit…

0301 basic medicineMaleGreen Fluorescent ProteinsBiomedical EngineeringNanotechnologyTransfectionFluorescence spectroscopyGreen fluorescent proteinBiomaterials03 medical and health sciencesMiceSonicationAnimalsMuscle SkeletalReporter geneChemistryHistocytochemistryElectroporationfungiOptical ImagingTransfectionEquipment DesignFluorescenceAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsMice Inbred C57BL030104 developmental biologyElectroporationBiophysicsFemaleSonoporationPreclinical imagingJournal of biomedical optics
researchProduct

Cell stimulation versus cell death induced by sequential treatments with pulsed electric fields and cold atmospheric pressure plasma

2018

Pulsed electric fields (PEFs) and cold atmospheric pressure plasma (CAP) are currently both investigated for medical applications. The exposure of cells to PEFs can induce the formation of pores in cell membranes and consequently facilitate the uptake of molecules. In contrast, CAP mainly acts through reactive species that are generated in the liquid environment. The objective of this study was to determine, if PEFs combined with plasma-treated cell culture medium can mutually reinforce effects on viability of mammalian cells. Experiments were conducted with rat liver epithelial WB-F344 cells and their tumorigenic counterpart WB-ras for a direct comparison of non-tumorigenic and tumorigenic…

0301 basic medicinePlasma GasesCell MembranesCancer Treatmentlcsh:MedicineMechanical Treatment of Specimens0302 clinical medicineElectricityNeoplasmsMedicine and Health SciencesEnzyme assaysColorimetric assayslcsh:ScienceBioassays and physiological analysisCells CulturedMTT assayMultidisciplinaryChemistryPhysicsElectroporationKetonesrespiratory systemCombined Modality TherapyChemistryElectroporationMembraneOncologySpecimen DisruptionElectric Field030220 oncology & carcinogenesisPhysical SciencesBiological CulturesCellular Structures and OrganellesResearch ArticlePyruvateCell typeProgrammed cell deathCell SurvivalElectric Stimulation TherapyAtmospheric-pressure plasmaResearch and Analysis Methods03 medical and health sciencesCell Line TumorAnimalsHumansMTT assayCell ProliferationCell growthlcsh:RChemical CompoundsBiology and Life SciencesEpithelial CellsCell BiologyCell CulturesCulture MediaRats030104 developmental biologyCytostaticsSpecimen Preparation and TreatmentCell cultureBiochemical analysisBiophysicslcsh:QAcidsPLOS ONE
researchProduct

Development of an RNA-based kit for easy generation of TCR-engineered lymphocytes to control T-cell assay performance.

2018

Cell-based assays to monitor antigen-specific T-cell responses are characterized by their high complexity and should be conducted under controlled conditions to lower multiple possible sources of assay variation. However, the lack of standard reagents makes it difficult to directly compare results generated in one lab over time and across institutions. Therefore TCR-engineered reference samples (TERS) that contain a defined number of antigen-specific T cells and continuously deliver stable results are urgently needed. We successfully established a simple and robust TERS technology that constitutes a useful tool to overcome this issue for commonly used T-cell immuno-assays. To enable users t…

0301 basic medicineRNA StabilityComputer scienceT cellPerformanceCancer development and immune defence Radboud Institute for Molecular Life Sciences [Radboudumc 2]RNA StabilityT-LymphocytesImmunologyCell Culture TechniquesComputational biology03 medical and health sciences0302 clinical medicineAll institutes and research themes of the Radboud University Medical CenterHigh complexityValidationHLA-A2 AntigenmedicineImmunology and AllergyHumansImrnunoguidingRNA MessengerCell EngineeringT-cell assaysReceptors Chimeric AntigenImmunomagnetic SeparationElectroporationT-cell receptorRNAReference StandardsStandardizationImmunomonitoring030104 developmental biologymedicine.anatomical_structureElectroporationBlood Buffy CoatFeasibility StudiesBiological Assay030215 immunologyJournal of immunological methods
researchProduct

Generation of TCR-engineered reference cell samples to control T-cell assay performance

2020

In vitro cellular assays analyzing antigen-specific T cells are characterized by their high complexity and require controlled conditions to lower experimental variations. Without standard cellular reagents, it is difficult to compare results over time and across institutions. To overcome this problem, a simple and robust technology was developed to generate TCR-engineered reference samples (TERS) containing defined numbers of antigen-specific T cells. Utilization of TERS enables performance control of three main T-cell assays: MHC-peptide multimer staining, IFN-gamma ELISpot and cytokine flow cytometry. TERS continuously deliver stable results and can be stored for longer periods of time. H…

0303 health sciencesChemistryElectroporationELISPOTT cell030303 biophysicsT-cell receptorfood and beveragesReference cellPerformance control03 medical and health sciencesmedicine.anatomical_structureHigh complexitymedicineCytokine flow cytometryBiomedical engineering
researchProduct

Data on in vivo PGC-1alpha overexpression model via local transfection in aged mouse muscle

2018

The data presented in this article are related to the research paper entitled “Intensified mitophagy in skeletal muscle with aging is downregulated by PGC-1alpha overexpression in vivo” (Yeo et al., 2019). The data explained the surgical procedure of in vivo local transfection by electroporation method in aged mouse tibialis anterior muscle, and plasmid DNA preparation and verification protocol. The data also showed the transfection efficiency levels of GFP or GFP-tagged PGC-1alpha through immunohistochemistry method for frozen muscle cross-sections.

0303 health sciencesMultidisciplinaryChemistryElectroporationfungiSkeletal muscleTransfectionlcsh:Computer applications to medicine. Medical informaticsGreen fluorescent proteinCell biology03 medical and health sciences0302 clinical medicinemedicine.anatomical_structureTibialis anterior muscleIn vivoBiochemistry Genetics and Molecular BiologyMitophagymedicinelcsh:R858-859.7Immunohistochemistrylcsh:Science (General)030217 neurology & neurosurgerylcsh:Q1-390030304 developmental biologyData in Brief
researchProduct