Search results for "Elliptic equation"

showing 10 items of 41 documents

An inverse problem for the minimal surface equation

2022

We use the method of higher order linearization to study an inverse boundary value problem for the minimal surface equation on a Riemannian manifold $(\mathbb{R}^n,g)$, where the metric $g$ is conformally Euclidean. In particular we show that with the knowledge of Dirichlet-to-Neumann map associated to the minimal surface equation, one can determine the Taylor series of the conformal factor $c(x)$ at $x_n=0$ up to a multiplicative constant. We show this both in the full data case and in some partial data cases.

osittaisdifferentiaaliyhtälötMathematics - Analysis of PDEsquasilinear elliptic equationApplied Mathematicsminimal surface equationFOS: Mathematicsinverse problemyhtälötAnalysis35R30 (Primary) 35J25 35J61 (Secondary)higher order linearizationinversio-ongelmatAnalysis of PDEs (math.AP)
researchProduct

Determining an unbounded potential for an elliptic equation with a power type nonlinearity

2022

In this article we focus on inverse problems for a semilinear elliptic equation. We show that a potential $q$ in $L^{n/2+\varepsilon}$, $\varepsilon>0$, can be determined from the full and partial Dirichlet-to-Neumann map. This extends the results from [M. Lassas, T. Liimatainen, Y.-H. Lin, and M. Salo, Partial data inverse problems and simultaneous recovery of boundary and coefficients for semilinear elliptic equations, Rev. Mat. Iberoam. (2021)] where this is shown for H\"older continuous potentials. Also we show that when the Dirichlet-to-Neumann map is restricted to one point on the boundary, it is possible to determine a potential $q$ in $L^{n+\varepsilon}$. The authors of arXiv:2202.0…

Mathematics - Analysis of PDEsApplied Mathematics35R30 35J25 35J61FOS: Mathematicsinverse problemyhtälötpartial datasemilinear elliptic equationhigher order linearizationinversio-ongelmatAnalysisAnalysis of PDEs (math.AP)
researchProduct

Scheduled Relaxation Jacobi method: improvements and applications

2016

Elliptic partial differential equations (ePDEs) appear in a wide variety of areas of mathematics, physics and engineering. Typically, ePDEs must be solved numerically, which sets an ever growing demand for efficient and highly parallel algorithms to tackle their computational solution. The Scheduled Relaxation Jacobi (SRJ) is a promising class of methods, atypical for combining simplicity and efficiency, that has been recently introduced for solving linear Poisson-like ePDEs. The SRJ methodology relies on computing the appropriate parameters of a multilevel approach with the goal of minimizing the number of iterations needed to cut down the residuals below specified tolerances. The efficien…

Physics and Astronomy (miscellaneous)Iterative methodParallel algorithmJacobi methodFinite differences methodFOS: Physical sciencesAlgorismesSystem of linear equations01 natural sciencesReduction (complexity)symbols.namesake0103 physical sciencesFOS: MathematicsMathematics - Numerical Analysis0101 mathematicsJacobi method010303 astronomy & astrophysicsMathematicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Numerical AnalysisApplied MathematicsLinear systemRelaxation (iterative method)Numerical Analysis (math.NA)Equacions diferencials parcialsElliptic equationsComputational Physics (physics.comp-ph)Iterative methodComputer Science Applications010101 applied mathematicsComputational MathematicsElliptic partial differential equationModeling and SimulationsymbolsAstrophysics - High Energy Astrophysical PhenomenaPhysics - Computational PhysicsAlgorithm
researchProduct

Uniqueness of positive radial solutions to singular critical growth quasilinear elliptic equations

2015

In this paper, we prove that there exists at most one positive radial weak solution to the following quasilinear elliptic equation with singular critical growth \[ \begin{cases} -\Delta_{p}u-{\displaystyle \frac{\mu}{|x|^{p}}|u|^{p-2}u}{\displaystyle =\frac{|u|^{\frac{(N-s)p}{N-p}-2}u}{|x|^{s}}}+\lambda|u|^{p-2}u & \text{in }B,\\ u=0 & \text{on }\partial B, \end{cases} \] where $B$ is an open finite ball in $\mathbb{R}^{N}$ centered at the origin, $1<p<N$, $-\infty<\mu<((N-p)/p)^{p}$, $0\le s<p$ and $\lambda\in\mathbb{R}$. A related limiting problem is also considered.

General MathematicsWeak solutionta111010102 general mathematicsMathematical analysisuniquenessPohozaev identity01 natural sciences010101 applied mathematicsElliptic curveMathematics - Analysis of PDEspositive radial solutionsSingular solutionFOS: Mathematicssingular critical growthquasilinear elliptic equationsasymptotic behaviorsUniqueness0101 mathematics35A24 35B33 35B40 35J75 35J92Analysis of PDEs (math.AP)MathematicsAnnales Academiae Scientiarum Fennicae Mathematica
researchProduct

Improved Hölder regularity for strongly elliptic PDEs

2019

We establish surprising improved Schauder regularity properties for solutions to the Leray-Lions divergence type equation in the plane. The results are achieved by studying the nonlinear Beltrami equation and making use of special new relations between these two equations. In particular, we show that solutions to an autonomous Beltrami equation enjoy a quantitative improved degree of H\"older regularity, higher than what is given by the classical exponent $1/K$.

Hölder regularityGeneral MathematicsMathematics::Analysis of PDEsElliptic pdes01 natural sciencesBeltrami equationMathematics - Analysis of PDEsFOS: Mathematics0101 mathematicsComplex Variables (math.CV)Divergence (statistics)MathematicsDegree (graph theory)Mathematics - Complex VariablesPlane (geometry)Applied Mathematics010102 general mathematicsMathematical analysisQuasiconformal mappingsElliptic equations30C62 (Primary) 35J60 35B65 (Secondary)010101 applied mathematicsNonlinear systemType equationBeltrami equationExponentAnalysis of PDEs (math.AP)
researchProduct

On ( p ( x ),  q ( x ))‐Laplace equations in ℝN without Ambrosetti‐Rabinowitz condition

2021

In the present work, we consider a (p(x), q(x))-elliptic equation describing the behavior of a double-phase anisotropic problem which has relevance in electrorheological fluid applications. The analysis leads to the existence of weak (nonnegative) solutions in the special case of potential terms with critical frequency and a superlinear reaction term. In order to prove the existence result, we combine critical point theory of mountain pass type with related topological and variational methods. Basically, the approach is variational, but we do not impose any Ambrosetti-Rabinowitz type condition for the superlinearity of the reaction. More specifically, we apply the Euler-Lagrange functional …

Elliptic curvevariable exponentLaplace transformVariable exponentCritical frequencyelliptic equationGeneral MathematicsMathematical analysisGeneral Engineering(p(x) q(x))-Laplace operatorcritical frequencyMathematicsMathematical Methods in the Applied Sciences
researchProduct

A Carleson type inequality for fully nonlinear elliptic equations with non-Lipschitz drift term

2017

This paper concerns the boundary behavior of solutions of certain fully nonlinear equations with a general drift term. We elaborate on the non-homogeneous generalized Harnack inequality proved by the second author in (Julin, ARMA -15), to prove a generalized Carleson estimate. We also prove boundary H\"older continuity and a boundary Harnack type inequality.

Mathematics::Analysis of PDEsGeneralized Carleson estimateBoundary (topology)Hölder conditionnonlinear elliptic equations01 natural sciencesHarnack's principleMathematics - Analysis of PDEsMathematics::ProbabilityFOS: MathematicsNon-Lipschitz drift0101 mathematicsElliptic PDECarleson estimateHarnack's inequalityMathematics010102 general mathematicsMathematical analysista111Type inequalityLipschitz continuityTerm (time)010101 applied mathematicsNonlinear systemAnalysisAnalysis of PDEs (math.AP)
researchProduct

Convex functions on Carnot Groups

2007

We consider the definition and regularity properties of convex functions in Carnot groups. We show that various notions of convexity in the subelliptic setting that have appeared in the literature are equivalent. Our point of view is based on thinking of convex functions as subsolutions of homogeneous elliptic equations.

Convex analysisPure mathematicsCarnot groupsubelliptic equations.49L25Mathematics::Complex VariablesGeneral MathematicsMathematical analysissubelliptic equationsMathematics::Analysis of PDEsHorizontal convexityviscosity convexity35J70Convexitysymbols.namesakeCarnot groupsHomogeneous35J67Convex optimizationsymbolsPoint (geometry)Carnot cycleConvex function22E30Mathematics
researchProduct

Regular solutions for nonlinear elliptic equations, with convective terms, in Orlicz spaces

2022

We establish some existence and regularity results to the Dirichlet problem, for a class of quasilinear elliptic equations involving a partial differential operator, depending on the gradient of the solution. Our results are formulated in the Orlicz-Sobolev spaces and under general growth conditions on the convection term. The sub- and supersolutions method is a key tool in the proof of the existence results.

sub-supersolutionMathematics - Analysis of PDEsOrlicz-Sobolev spaceSettore MAT/05 - Analisi Matematicagradient dependenceGeneral Mathematicsnonlinear elliptic equationFOS: Mathematics35J25 35J99 46E35Analysis of PDEs (math.AP)
researchProduct

C1,α-regularity for variational problems in the Heisenberg group

2017

We study the regularity of minima of scalar variational integrals of $p$-growth, $1<p<\infty$, in the Heisenberg group and prove the H\"older continuity of horizontal gradient of minima.

osittaisdifferentiaaliyhtälötNumerical AnalysisregularityHeisenberg groupsApplied Mathematicsp-Laplacian010102 general mathematicsScalar (mathematics)subelliptic equationsHölder condition01 natural sciences35H20 35J70010101 applied mathematicsMaxima and minimaMathematics - Analysis of PDEsweak solutionsPhysics::Atomic and Molecular Clustersp-LaplacianHeisenberg group0101 mathematicsAnalysisMathematical physicsMathematicsAnalysis &amp; PDE
researchProduct