6533b855fe1ef96bd12b12cc
RESEARCH PRODUCT
An inverse problem for the minimal surface equation
Janne Nurminensubject
osittaisdifferentiaaliyhtälötMathematics - Analysis of PDEsquasilinear elliptic equationApplied Mathematicsminimal surface equationFOS: Mathematicsinverse problemyhtälötAnalysis35R30 (Primary) 35J25 35J61 (Secondary)higher order linearizationinversio-ongelmatAnalysis of PDEs (math.AP)description
We use the method of higher order linearization to study an inverse boundary value problem for the minimal surface equation on a Riemannian manifold $(\mathbb{R}^n,g)$, where the metric $g$ is conformally Euclidean. In particular we show that with the knowledge of Dirichlet-to-Neumann map associated to the minimal surface equation, one can determine the Taylor series of the conformal factor $c(x)$ at $x_n=0$ up to a multiplicative constant. We show this both in the full data case and in some partial data cases.
year | journal | country | edition | language |
---|---|---|---|---|
2022-03-17 |