Search results for "Energy Levels"

showing 10 items of 245 documents

The degenerate gravitino scenario

2010

In this work, we explore the "degenerate gravitino" scenario where the mass difference between the gravitino and the lightest MSSM particle is much smaller than the gravitino mass itself. In this case, the energy released in the decay of the next to lightest sypersymmetric particle (NLSP) is reduced. Consequently the cosmological and astrophysical constraints on the gravitino abundance, and hence on the reheating temperature, become softer than in the usual case. On the other hand, such small mass splittings generically imply a much longer lifetime for the NLSP. We find that, in the constrained MSSM (CMSSM), for neutralino LSP or NLSP, reheating temperatures compatible with thermal leptogen…

PhysicsHigh Energy Physics - TheoryParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Supersymmetry and cosmologyDegenerate energy levelsDark matter theoryHigh Energy Physics::PhenomenologyFOS: Physical sciencesAstronomy and AstrophysicsCosmology of Theories beyond the SMGeneral Relativity and Quantum CosmologyHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - Theory (hep-th)LeptogenesisThermalNeutralinoLeptogenesisGravitinoHigh Energy Physics::ExperimentAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

CP violation and the H-A lineshape

2007

In two-Higgs doublet models (and particularly in the MSSM) the CP-even (H) and CP-odd (A) neutral scalars are nearly degenerate in mass, and their s-channel production would lead to nearly overlapping resonances. CP-violating effects may connect these two Higgs bosons, giving origin to one-loop particle mixing, which, due to their mass proximity, can be resonantly enhanced, altering their lineshape significantly. We show that, in general, the effect of such a CP-violating mixing cannot be mimicked by (or be re-absorbed into) a simple redefinition of the H and A masses in the context of a CP-conserving model. Specifically, the effects of the CP-mixing are such that, either the mass-splitting…

PhysicsHistoryRange (particle radiation)Particle physicsSIMPLE (dark matter experiment)Degenerate energy levelsHigh Energy Physics::PhenomenologyFOS: Physical sciencesFísicaContext (language use)Computer Science ApplicationsEducationHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Higgs bosonCP violationMixing (physics)Boson
researchProduct

Arbitrary qudit gates by adiabatic passage

2013

We derive an adiabatic technique that implements the most general SU($d$) transformation in a quantum system of $d$ degenerate states, featuring a qudit. This technique is based on the factorization of the SU($d$) transformation into $d$ generalized quantum Householder reflections, each of which is implemented by a two-shot stimulated Raman adiabatic passage with appropriate static phases. The energy of the lasers needed to synthesize a single Householder reflection is shown to be remarkably constant as a function of $d$. This technique is directly applicable to a linear trapped ion system with $d+1$ ions. We implement the quantum Fourier transform numerically in a qudit with $d=4$ (defined…

PhysicsHouseholder transformationQuantum mechanicsDegenerate energy levelsQuantum systemStimulated Raman adiabatic passageQuantum Fourier transformAdiabatic processQuantumAtomic and Molecular Physics and OpticsQuantum computerPhysical Review A
researchProduct

Symmetry and Electronic Structure of Noble Metal Nanoparticles and the Role of Relativity

2004

High resolution photoelectron spectra of cold mass selected Cu_n-, Ag_n- and Au_n- with n =53-58 have been measured at a photon energy of 6.42 eV. The observed electron density of states is not the expected simple electron shell structure, but seems to be strongly influenced by electron-lattice interactions. Only Cu55- and Ag55- exhibit highly degenerate states. This is a direct consequence of their icosahedral symmetry, as is confirmed by density functional theory calculations. Neighboring sizes exhibit perturbed electronic structures, as they are formed by removal or addition of atoms to the icosahedron and therefore have lower symmetries. Gold clusters in the same size range show complet…

PhysicsIcosahedral symmetryDegenerate energy levelsElectron shellGeneral Physics and AstronomyFOS: Physical sciencesElectronic structureSpectral lineCondensed Matter - Other Condensed MatterAb initio quantum chemistry methodsDensity of statesDensity functional theoryAtomic physicsOther Condensed Matter (cond-mat.other)
researchProduct

Star orbits in metal clusters

1993

A possibility that classical five-point star orbits play a dominant role for shell structures of large metal clusters is investigated quantum mechanically. With a soft Woods-Saxon spherical potential a signature of the five-point star orbit is found in the level densities. Quantum numbers of degenerate levels in the soft Woods-Saxon potential differ by 2 and 5 in radial nodes and angular momenta, respectively. Unlike the experimental observation the peaks in the mass spectrum are not equally spaced as a function of N 1/3 . The self-consistent jellium model does not reproduce the degeneracy associated with the five-point star orbits. It is demonstrated that by covering high-density metal clu…

PhysicsJelliumDegenerate energy levelsOrbit (dynamics)Density of statesWoods–Saxon potentialElectronic structureStar (graph theory)Atomic physicsQuantum numberPhysical Review B
researchProduct

Double Exchange in Orbitally Degenerate Mixed Valence Clusters: Magnetic Anisotropy, Vibronic Effects

2001

In this paper we consider the vibronic problem of the double exchange in mixed-valence dimers containing transition metal ions in orbitally degenerate ground states. The vibronic model includes interaction with the breathing local modes (Piepho-Krausz-Schatz-PKS) as well as the modulation of metal-metal distances as suggested by Piepho. The double exchange in orbitally degenerate systems is shown to produce strong magnetic anisotropy of orbital nature. PKS interaction is expected to suppress the magnetic anisotropy of the system, while the intercenter vibrations tend to enhance it. The roles of spin-orbit coupling and temperature are revealed for the systems with different geometries.

PhysicsMagnetic anisotropyValence (chemistry)Degenerate energy levelsCondensed Matter::Strongly Correlated ElectronsMolecular physicsTransition metal ions
researchProduct

Spectroscopy of Hexafluorides with an Odd Number of Electrons: The Vibronic Bands of IrF6

1996

Abstract The low resolution absorption spectroscopy of the first five excited electronic states of IrF 6 has made possible some new assignments for the vibronic transitions of this molecule, and the determination of new vibronic parameter values. They are more accurate than those found in the literature. In this aim, we introduce a simplified tensorial formulation for the linear Jahn–Teller terms in a fourfold degenerate electronic state of an XY 6 -type molecule, which allows easier computation of matrix elements and avoids the use of perturbation theory. Methods for IrF 6 synthesis (using a dynamical flow system) and purification are also presented.

PhysicsMatrix (mathematics)Vibronic couplingAbsorption spectroscopyDegenerate energy levelsVibronic spectroscopyElectronPhysical and Theoretical ChemistryAtomic physicsPerturbation theorySpectroscopySpectroscopyAtomic and Molecular Physics and OpticsJournal of Molecular Spectroscopy
researchProduct

Ordinary muon capture studies for the matrix elements in ββ decay

2018

Precise measurement of $\gamma$-rays following ordinary (non-radiative) capture of negative muons by natural Se, Kr, Cd and Sm, as well as isotopically enriched $^{48}$Ti, $^{76}$Se, $^{82}$Kr, $^{106}$Cd and $^{150}$Sm targets was performed by means of HPGe detectors. Energy and time distributions were investigated and total life time of negative muon in different isotopes was deduced. Detailed analysis of $\gamma$-lines intensity allows to extract relative yield of several daughter nuclei and partial rates of ($\mu$,$\nu$) capture to numerous excited levels of the $^{48}$Sc, $^{76}$As, $^{82}$Br, $^{106}$Ag and $^{150}$Tc isotopes which are considered to be virtual states of an intermedia…

PhysicsMuonta114010308 nuclear & particles physicsenergy levels and level densitieschemistry.chemical_elementdouble beta decayGermaniumhiukkasfysiikka01 natural sciencesnuclear structure and decaysMuon captureelectron and muon captureMatrix (mathematics)chemistryExcited state0103 physical sciencesAtomic physicsNuclear Experiment010306 general physicsydinfysiikkaNuclear ExperimentEnergy (signal processing)Intensity (heat transfer)Physical Review C
researchProduct

Parametric coherent oscillation with feedback via an orthogonally polarized wave

1999

Coherent light amplification with photorefractive crystals may be a consequence of several frequency degenerate (or nearly degenerate) processes of nonlinear wave mixing : It appears for two- beam coupling in the crystals with diffusion-driven charge transport [1] or transport via circular photovoltaic currents [2].

PhysicsNonlinear systemOscillationDegenerate energy levelsPhysics::OpticsLight beamCharge (physics)Atomic physicsRefractive indexMixing (physics)Light scatteringAdvances in Photorefractive Materials, Effects and Devices
researchProduct

Transverse patterns in degenerate optical parametric oscillation and degenerate four-wave mixing.

1996

Transverse pattern formation in both degenerate optical parametric oscillation and degenerate four-wave mixing is considered both theoretically and numerically. In the limit of small signal detuning both systems are shown to be described by the real Swift-Hohenberg equation. Contrarily, for small signal and large pump detunings the Swift-Hohenberg equation is modified differently in both systems, by the appearance of additional nonlinear terms, which signal the existence of nonlinear resonances that are theoretically studied through the derivation of the amplitude equation for the roll pattern in both systems. Numerical analysis supports the theoretical predictions. \textcopyright{} 1996 Th…

PhysicsNonlinear systemTransverse planeAmplitudeCross-polarized wave generationQuantum mechanicsDegenerate energy levelsPattern formationSignalAtomic and Molecular Physics and OpticsMixing (physics)Physical review. A, Atomic, molecular, and optical physics
researchProduct