Search results for "Energy conversion"

showing 10 items of 134 documents

Optimized blue light generation in optically contacted walk-off compensated RbTiOAsO4 and KTiOP1−yAsyO4

1999

Abstract We study type II 1.32 μm second harmonic generation (SHG) in a RbTiOAsO 4 optically contacted walk-off compensated device. The reduction of the effective walk-off angle by a factor of 3.7 with respect to KTiOPO 4 for the same interaction leads to an enhancement by a factor of 10 of the conversion efficiency. A model is proposed for both type I and type II SHG in such a structure. The angular tuning curve is a multi-peaked one, as predicted by the model. The enhancement of the SHG conversion efficiency allows us to optimize the generation of blue laser light at 440 nm: a specially designed KTiOP 0.98 As 0.02 O 4 solid solution crystal achieves angular non-critical phase matching at …

Materials scienceSum-frequency generationbusiness.industryEnergy conversion efficiencySecond-harmonic imaging microscopyNonlinear opticsSecond-harmonic generationAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsCrystalOpticsElectrical and Electronic EngineeringPhysical and Theoretical ChemistrybusinessBlue lightSolid solutionOptics Communications
researchProduct

Highly Efficient Thermally Co-evaporated Perovskite Solar Cells and Mini-modules

2020

The rapid improvement in the power conversion efficiency (PCE) of perovskite solar cells (PSCs) has prompted interest in bringing the technology toward commercialization. Capitalizing on existing industrial processes facilitates the transition from laboratory to production lines. In this work, we prove the scalability of thermally co-evaporated MAPbI3 layers in PSCs and mini-modules. With a combined strategy of active layer engineering, interfacial optimization, surface treatments, and light management, we demonstrate PSCs (0.16 cm2 active area) and mini-modules (21 cm2 active area) achieving record PCEs of 20.28% and 18.13%, respectively. Un-encapsulated PSCs retained ∼90% of their initial…

Materials scienceTandembusiness.industryEnergy conversion efficiencyPhotovoltaic system02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesThermal Evaporation0104 chemical sciencesActive layerGeneral Energy:Physics [Science]PhotovoltaicsLight managementOptoelectronicsEnergiaPerovskite Solar Cells0210 nano-technologybusinessCèl·lules fotoelèctriques
researchProduct

Improvement of DSSC performance by voltage stress application

2016

Dye-sensitized solar cells (DSSCs) are promising third generation photovoltaic devices given their potential low cost and high efficiency. Some factors still affect DSSCs performance, such structure of electrodes, electrolyte compositions, nature of the sensitizers, power conversion efficiency, long-term stability, etc. In this work we discuss the effect of electrical stresses, which allow to improve DSSC performance. We have investigated the outcomes of forward and reverse DC bias stress as a function of time, voltage, and illumination level in the DSSCs sensitized with the N719, Ruthenium complex based dye. We demonstrate that all the major solar cell parameters, i.e., open circuit voltag…

Materials scienceageing effectContext (language use)02 engineering and technology010402 general chemistryDye-sensitized solar cells01 natural sciencesageing effectslaw.inventionlawSolar cellelectric stressEquivalent series resistanceOpen-circuit voltagebusiness.industryPhotovoltaic systemEnergy conversion efficiency021001 nanoscience & nanotechnologyelectric streperformance improvement0104 chemical sciencesDye-sensitized solar cellOptoelectronics0210 nano-technologybusinessDye-sensitized solar cellShort circuit
researchProduct

Thermal expansion, normalized thermo-optic coefficients, and condition for second harmonic generation of a Nd:YAG laser with wide temperature bandwid…

2011

Interferometric determination of thermal expansion and of normalized thermo-optic coefficients of RbTiOPO4 at four laser wavelengths are performed as a function of temperature. A suitable vectorial formalism applied to obtained data allows the establishment of the temperature dependence of refractive indices, and subsequent theoretical analysis enables one to predict that an extremum in the evolution of the phase-matching direction in the (X,Y) plane should occur near 100 °C for type II second harmonic generation of Nd:YAG lasers, with a temperature bandwidth that can be as large as 117 °C for a crystal of 10 mm in length. Such unusual behavior is observed experimentally by recording the co…

Materials sciencebusiness.industryEnergy conversion efficiencyPhysics::OpticsNonlinear opticsSecond-harmonic generationStatistical and Nonlinear PhysicsLaserAtomic and Molecular Physics and OpticsThermal expansionlaw.inventionWavelengthOpticslawNd:YAG laserbusinessRefractive indexJournal of the Optical Society of America B
researchProduct

Continuous-wave, double-pass second-harmonic generation with 60% efficiency in a single MgO:PPSLT crystal

2014

We present a double-pass scheme for high-efficiency, high-power, second-harmonic generation (SHG) in a single MgO-doped periodically poled stoichiometric lithium tantalate (MgO:PPSLT) crystal. The device is pumped by a single-frequency, continuous-wave fiber amplifier laser system at a wavelength of 1091 nm. For the double-pass scheme, a conversion efficiency of 60% and a harmonic power of 12.8 W at a wavelength of 545.5 nm with a high beam quality of (M2<1.2) is achieved. Compared to single-pass SHG, a double-pass enhancement factor of more than two is observed at the highest fundamental pump power.

Materials sciencebusiness.industryEnergy conversion efficiencyPotassium titanyl phosphateSecond-harmonic generationAtomic and Molecular Physics and Opticschemistry.chemical_compoundOpticschemistryFiber laserLithium tantalateHarmonicOptoelectronicsContinuous waveLaser beam qualitybusinessOptics Letters
researchProduct

ZnS Ultrathin interfacial layers for optimizing carrier management in Sb2S3-based photovoltaics

2021

Antimony chalcogenides represent a family of materials of low toxicity and relative abundance, with a high potential for future sustainable solar energy conversion technology. However, solar cells based on antimony chalcogenides present open-circuit voltage losses that limit their efficiencies. These losses are attributed to several recombination mechanisms, with interfacial recombination being considered as one of the dominant processes. In this work, we exploit atomic layer deposition (ALD) to grow a series of ultrathin ZnS interfacial layers at the TiO2/Sb2S3 interface to mitigate interfacial recombination and to increase the carrier lifetime. ALD allows for very accurate control over th…

Materials sciencechemistry.chemical_elementanti-recombination layer02 engineering and technology010402 general chemistry7. Clean energy01 natural sciencesAtomic layer depositionAntimonyPhotovoltaicsinterfacial layerGeneral Materials Sciencepassivation layerÒxidsMaterialsCèl·lules fotoelèctriquesextremely thin absorberthin film solar cellsintegumentary systemLow toxicitybusiness.industrytunnel barrierfood and beverages021001 nanoscience & nanotechnology0104 chemical sciencesTunnel barrierchemistrybiological sciencesatomic layer depositionSolar energy conversionOptoelectronicschalcogenidesThin film solar cell0210 nano-technologybusinessResearch Article
researchProduct

Enamine-based hole transporting materials for vacuum-deposited perovskite solar cells

2020

In a short period of time, the rapid development of perovskite solar cells attracted a lot of attention in the science community with the record for power conversion efficiency being broken every year. Despite the fast progress in power conversion efficiency there are still many issues that need to be solved before starting large scale commercial applications, such as, among others, the difficult and costly synthesis and usage of toxic solvents for the deposition of hole transport materials (HTMs). We herein report new enamine-based charge transport materials obtained via a simple one step synthesis procedure, from commercially available precursors and without the use of expensive organomet…

Materials scienceenamine-based hole transporting materialsEnergy Engineering and Power Technology02 engineering and technology010402 general chemistry01 natural sciences7. Clean energyperovskite solar cellsCatalysisEnaminechemistry.chemical_compoundVacuum depositionElectric fieldDeposition (phase transition)Materialsenamine-based hole transporting materials ; vacuum-deposited ; perovskite solar cellsCèl·lules fotoelèctriquesPerovskite (structure)Renewable Energy Sustainability and the Environmentbusiness.industryEnergy conversion efficiency021001 nanoscience & nanotechnology0104 chemical sciencesThermogravimetryFuel TechnologychemistryOptoelectronics0210 nano-technologybusinessvacuum-deposited
researchProduct

Role of TiO2 in Highly Efficient Solar Cells

2021

Titanium dioxide (TiO2) is a naturally occurring oxide of titanium. It has a wide range of applications. It has three metastable phases, which can be synthesized easily by chemical routes. Usage of TiO2 in thin-film solar cells has gained much attention in increasing the performance of the cell. The objectives are to harvest the freely available earth’s energy and to gain expertise in yielding a maximum conversion efficiency. Various strategies are employed to face the challenges in improving the efficiency of solar cells. This study provides a broad view of the usage of different forms of TiO2 layers, like nanochannel, porous, nanotubes, and mesoporous layers, in enhancing electron injecti…

Materials scienceintegumentary systembusiness.industryEnergy conversion efficiencyOxidefood and beverageschemistry.chemical_elementNanotechnologychemistry.chemical_compoundchemistryQuantum dotPhotovoltaicsbiological sciencesTitanium dioxideMesoporous materialbusinessTitaniumPerovskite (structure)
researchProduct

Nanotechnology in lithium niobate for integrated optic frequency conversion in the UV

2017

In the domain of Earth Explorer satellites nanoengineered nonlinear crystals can optimize UV tunable solid-state laser converters. Lightweight sources can be based on Lithium Niobate (LN) domain engineering by electric field poling and guided wave interactions. In this Communication we report the preliminary experimental results and the very first demonstration of UltraViolet second-harmonic generation by first-order quasi-phase-matching in a surface-periodically-poled proton-exchanged LN waveguide. The pump source was a Ti-Sapphire laser with a tunability range of 700- 980 nm and a 40 GHz linewidth. We have measured UV continuous-wave light at 390 nm by means of a lock-in amplifier and of …

Materials sciencenanotechnologysecond harmonic generationbusiness.industrylithium niobateferroelectricsLithium niobateEnergy conversion efficiencySecond-harmonic generationPhotorefractive effectmedicine.disease_causeLaserlaw.inventionchemistry.chemical_compoundLaser linewidthOpticschemistrylawLithium tantalatemedicineOptoelectronicsbusinessUltravioletInternational Conference on Space Optics — ICSO 2006
researchProduct

Energy conversion from external fluctuating signals based on asymmetric nanopores

2015

Electrical transduction from fluctuating external signals is central to energy conversion based on nanoscale electrochemical devices and bioelectronics interfaces. We demonstrate theoretically and experimentally a significant energy transduction from white noise signals using the electrical rectification of asymmetric nanopores in polymeric membranes immersed in aqueous electrolyte solutions. Load capacitor voltages of the order of 1 V are obtained within times of the order of 1 min by means of nanofluidic diodes which convert zero time-average potentials of amplitudes of the order of 1 V into average net currents. We consider single-nanopore and multipore membranes to show that the convers…

NanoporeBioelectronicsMaterials scienceRenewable Energy Sustainability and the Environmentbusiness.industryElectrical rectificationNanotechnologyElectrolyteFluctuating signalCapacitanceEnergy conversionMembraneRectificationFISICA APLICADAOptoelectronicsEnergy transformationEquivalent circuitGeneral Materials ScienceElectrical and Electronic EngineeringbusinessDiode
researchProduct