Search results for "Enzims"
showing 9 items of 9 documents
Recombinant laccase from Pediococcus acidilactici CECT 5930 with ability to degrade tyramine
2017
Biogenic amines degradation by bacterial laccases is little known, so we have cloned and heterologously expressed, in E. coli, a new laccase from Pediococcus acidilactici CECT 5930 (Lpa5930), a lactic acid bacterium commonly found in foods able to degrade tyramine. The recombinant enzyme has been characterized by physical and biochemical assays. Here we report the optimization of expression and purification procedures of this laccase. DNA encoding sequence of laccase from P. acidilactici was amplified by PCR and cloned into the expression plasmid pET28a for induction by isopropyl-β-D-thiogalactoipyranoside. Protein expression was performed in E. coli BL21(DE3) harboring pGro7 plasmid expres…
Cutinases: Characteristics and Insights in Industrial Production
2021
Cutinases (EC 3.1.1.74) are serin esterases that belong to the α/β hydrolases superfamily and present in the Ser-His-Asp catalytic triad. They show characteristics between esterases and lipases. These enzymes hydrolyze esters and triacylglycerols and catalyze esterification and transesterification reactions. Cutinases are synthesize by plant pathogenic fungi, but some bacteria and plants have been found to produce cutinases as well. In nature they facilitate a pathogen’s invasion by hydrolyzing the cuticle that protects plants, but can be also used for saprophytic fungi as a way to nourish themselves. Cutinases can hydrolyze a wide range of substrates like esters, polyesters, triacylglycero…
A novel regulatory mechanism of MAP kinases activation and nuclear translocation mediated by PKA and the PTP-SL tyrosine phosphatase
1999
Protein tyrosine phosphatase PTP-SL retains mitogen-activated protein (MAP) kinases in the cytoplasm in an inactive form by association through a kinase interaction motif (KIM) and tyrosine dephosphorylation. The related tyrosine phosphatases PTP-SL and STEP were phosphorylated by the cAMP-dependent protein kinase A (PKA). The PKA phosphorylation site on PTP-SL was identified as the Ser231 residue, located within the KIM. Upon phosphorylation of Ser231, PTP-SL binding and tyrosine dephosphorylation of the MAP kinases extracellular signal–regulated kinase (ERK)1/2 and p38α were impaired. Furthermore, treatment of COS-7 cells with PKA activators, or overexpression of the Cα catalytic subunit …
Prevention of Hereditary Angioedema Attacks with a Subcutaneous C1 Inhibitor
2017
Prevenció; Atac d'angioedema; Inhibidor C1 Prevención; Ataque de angioedema; Inhibidor C1 Prevention; Angioedema attack; C1 inhibitor BACKGROUND: Hereditary angioedema is a disabling, potentially fatal condition caused by deficiency (type I) or dysfunction (type II) of the C1 inhibitor protein. In a phase 2 trial, the use of CSL830, a nanofiltered C1 inhibitor preparation that is suitable for subcutaneous injection, resulted in functional levels of C1 inhibitor activity that would be expected to provide effective prophylaxis of attacks. METHODS: We conducted an international, prospective, multicenter, randomized, double-blind, placebo-controlled, dose-ranging, phase 3 trial to evaluate the …
Enzimas de la biosíntesis del virus SARS-CoV-2 como dianas potenciales para el descubrimiento de nuevos antivirales
2021
La aparición de la pandemia producida por la COVID-19 (enfermedad producida por coronavirus 2019), cuyo agente causal es el SARS-CoV-2, ha provocado una gran preocupación a nivel mundial. Esta emergencia sanitaria ha puesto de manifiesto la necesidad urgente que existe de desarrollar o bien una nueva vacuna o bien agentes terapéuticos antivirales que permitan combatir al SARS-CoV-2. El reposicionamiento de fármacos es una de las estrategias más rápidas y prácticas de identificar rápidamente nuevos fármacos que permitirían prevenir, controlar o incluso erradicar el virus. Encontrar agentes terapéuticos que actúen directamente sobre enzimas específicas que tengan un rol esencial en la replica…
Use of Silica Based Materials as Modulators of the Lipase Catalyzed Hydrolysis of Fats under Simulated Duodenal Conditions
2020
[EN] The effect of silica materials and their functionalization in the lipase catalyzed fat hydrolysis has been scarcely studied. Fifteen silica materials were prepared and their effect on the fat hydrolysis was measured, under simulated duodenal conditions, using the pH-stat method. The materials are composed of the combination of three supports (Stober massive silica nanoparticles, Stober mesoporous nanoparticles and UVM-7) and four surface functionalizations (methyl, trimethyl, propyl and octyl). In addition, the non-functionalized materials were tested. The functional groups were selected to offer a hydrophobic character to the material improving the interaction with the fat globules an…
Interfacial activation-based molecular bioimprinting of lipolytic enzymes
1995
Interfacial activation-based molecular (bio)-imprinting (IAMI) has been developed to rationally improve the performance of lipolytic enzymes in nonaqueous environments. The strategy combinedly exploits (i) the known dramatic enhancement of the protein conformational rigidity in a water-restricted milieu and (ii) the reported conformational changes associated with the activation of these enzymes at lipid-water interfaces, which basically involves an increased substrate accessibility to the active site and/or an induction of a more competent catalytic machinery. Six model enzymes have been assayed in several model reactions in nonaqueous media. The results, rationalized in light of the presen…
The formation of hybrid complexes between isoenzymes of glyceraldehyde‐3‐phosphate dehydrogenase regulates its aggregation state, the glycolytic acti…
2019
The glycolytic enzyme glyceraldehyde‐3‐phosphate dehydrogenase (GAPDH) has been traditionally considered a housekeeping protein involved in energy generation. However, evidence indicates that GAPDHs from different origins are tightly regulated and that this regulation may be on the basis of glycolysis‐related and glycolysis‐unrelated functions. In Saccharomyces cerevisiae, Tdh3 is the main GAPDH, although two other isoenzymes encoded by TDH1 and TDH2 have been identified. Like other GAPDHs, Tdh3 exists predominantly as a tetramer, although dimeric and monomeric forms have also been isolated. Mechanisms of Tdh3 regulation may thus imply changes in its oligomeric state or be based in its abil…
The catalytic mechanism of glyceraldehyde 3-phosphate dehydrogenase from Trypanosoma cruzi elucidated via the QM/MM approach
2013
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has been identified as a key enzyme involved in glycolysis processes for energy production in the Trypanosoma cruzi parasite. This enzyme catalyses the oxidative phosphorylation of glyceraldehyde 3-phosphate (G3P) in the presence of inorganic phosphate (Pi) and nicotinamide adenosine dinucleotide (NAD+). The catalytic mechanism used by GAPDH has been intensively investigated. However, the individual roles of Pi and the C3 phosphate of G3P (Ps) sites, as well as some residues such as His194 in the catalytic mechanism, remain unclear. In this study, we have employed Molecular Dynamics (MD) simulations within hybrid quantum mechanical/molecular …