Search results for "Eos"
showing 10 items of 2714 documents
Enniatin B induces expression changes in the electron transport chain pathway related genes in lymphoblastic T-cell line
2018
Abstract Enniatin B is a ionophoric and lipophilic mycotoxin which reaches the bloodstream and has the ability to penetrate into cellular membranes. The purpose of this study was to reveal changes in the gene expression profile caused by enniatin B in human Jurkat lymphoblastic T-cells after 24 h of exposure at 1.5, 3 and 5 μM by next generation sequencing. It was found that up to 27% of human genome expression levels were significantly altered (5750 genes for both down-regulation and up-regulation). In the three enniatin B concentrations studied 245 differentially expressed genes were found to be overlapped, 83 were down and 162 up-regulated. ConsensusPathDB analysis of over-representation…
Eosinophil depletion suppresses radiation-induced small intestinal fibrosis.
2017
Radiation-induced intestinal fibrosis (RIF) is a serious complication after abdominal radiotherapy for pelvic tumor or peritoneal metastasis. Herein, we show that RIF is mediated by eosinophil interactions with α-smooth muscle actin-positive (α-SMA+) stromal cells. Abdominal irradiation caused RIF especially in the submucosa (SM) of the small intestine, which was associated with the excessive accumulation of eosinophils in both human and mouse. Eosinophil-deficient mice showed markedly ameliorated RIF, suggesting the importance of eosinophils. After abdominal irradiation, chronic crypt cell death caused elevation of extracellular adenosine triphosphate, which in turn activated expression of…
Mg2+ homeostasis and transport in cyanobacteria – at the crossroads of bacterial and chloroplast Mg2+ import
2018
Abstract Magnesium cation (Mg2+) is the most abundant divalent cation in living cells, where it is required for various intracellular functions. In chloroplasts and cyanobacteria, established photosynthetic model systems, Mg2+ is the central ion in chlorophylls, and Mg2+ flux across the thylakoid membrane is required for counterbalancing the light-induced generation of a ΔpH across the thylakoid membrane. Yet, not much is known about Mg2+ homoeostasis, transport and distribution within cyanobacteria. However, Mg2+ transport across membranes has been studied in non-photosynthetic bacteria, and first observations and findings are reported for chloroplasts. Cyanobacterial cytoplasmic membranes…
Analysis of RNA modifications by liquid chromatography–tandem mass spectrometry
2016
The analysis of RNA modifications is of high importance in order to address a wide range of biological questions. Therefore, a highly sensitive and accurate method such as liquid chromatography-tandem mass spectrometry (LC-MS/MS) has to be available. By using different LC-MS/MS procedures, it is not only possible to quantify very low amounts of RNA modifications, but also to detect probably unknown modified nucleosides. For these cases the dynamic multiple reaction monitoring and the neutral loss scan are the most common techniques. Here, we provide the whole workflow for analyzing RNA samples regarding their modification content. This includes an equipment list, the preparation of required…
Enhanced autophagic-lysosomal activity and increased BAG3-mediated selective macroautophagy as adaptive response of neuronal cells to chronic oxidati…
2019
Oxidative stress and a disturbed cellular protein homeostasis (proteostasis) belong to the most important hallmarks of aging and of neurodegenerative disorders. The proteasomal and autophagic-lysosomal degradation pathways are key measures to maintain proteostasis. Here, we report that hippocampal cells selected for full adaptation and resistance to oxidative stress induced by hydrogen peroxide (oxidative stress-resistant cells, OxSR cells) showed a massive increase in the expression of components of the cellular autophagic-lysosomal network and a significantly higher overall autophagic activity. A comparative expression analysis revealed that distinct key regulators of autophagy are upregu…
Histone Post-Translational Modifications and Nucleosome Organisation in Transcriptional Regulation: Some Open Questions
2017
The organisation of chromatin is first discussed to conclude that nucleosomes play both structural and transcription-regulatory roles. The presence of nucleosomes makes difficult the access of transcriptional factors to their target sequences and the action of RNA polymerases. The histone post-translational modifications and nucleosome remodelling are first discussed, from a historical point of view, as mechanisms to remove the obstacles imposed by chromatin structure to transcription. Instead of reviewing the state of the art of the whole field, this review is centred on some open questions. First, some “non-classical” histone modifications, such as short-chain acylations other than acetyl…
Deep learning architectures for prediction of nucleosome positioning from sequences data
2018
Abstract Background Nucleosomes are DNA-histone complex, each wrapping about 150 pairs of double-stranded DNA. Their function is fundamental for one of the primary functions of Chromatin i.e. packing the DNA into the nucleus of the Eukaryote cells. Several biological studies have shown that the nucleosome positioning influences the regulation of cell type-specific gene activities. Moreover, computational studies have shown evidence of sequence specificity concerning the DNA fragment wrapped into nucleosomes, clearly underlined by the organization of particular DNA substrings. As the main consequence, the identification of nucleosomes on a genomic scale has been successfully performed by com…
Deep learning network for exploiting positional information in nucleosome related sequences
2017
A nucleosome is a DNA-histone complex, wrapping about 150 pairs of double-stranded DNA. The role of nucleosomes is to pack the DNA into the nucleus of the Eukaryote cells to form the Chromatin. Nucleosome positioning genome wide play an important role in the regulation of cell type-specific gene activities. Several biological studies have shown sequence specificity of nucleosome presence, clearly underlined by the organization of precise nucleotides substrings. Taking into consideration such advances, the identification of nucleosomes on a genomic scale has been successfully performed by DNA sequence features representation and classical supervised classification methods such as Support Vec…
Harnessing mechanosensation in next generation cardiovascular tissue engineering
2020
The ability of the cells to sense mechanical cues is an integral component of ”social” cell behavior inside tissues with a complex architecture. Through ”mechanosensation” cells are in fact able to decrypt motion, geometries and physical information of surrounding cells and extracellular matrices by activating intracellular pathways converging onto gene expression circuitries controlling cell and tissue homeostasis. Additionally, only recently cell mechanosensation has been integrated systematically as a crucial element in tissue pathophysiology. In the present review, we highlight some of the current efforts to assess the relevance of mechanical sensing into pathology modeling and manufact…
The good and bad of targeting cancer-associated extracellular matrix
2017
The maintenance of tissue homeostasis requires extracellular matrix (ECM) remodeling. Immune cells actively participate in regenerating damaged tissues contributing to ECM deposition and shaping. Dysregulated ECM deposition characterizes fibrotic diseases and cancer stromatogenesis, where a chronic inflammatory state sustains the ECM increase. In cancer, the ECM fosters several steps of tumor progression, providing pro-survival and proliferative signals, promoting tumor cell dissemination via collagen fibers or acting as a barrier to impede drug diffusion. Interfering with processes leading to chronic ECM deposition, as occurring in cancer, might allow the simultaneous targeting of both pri…