Search results for "Equation of State"

showing 10 items of 160 documents

Characterization of theTiSiO4structure and its pressure-induced phase transformations: Density functional theory study

2009

Theoretical investigations concerning the possible titanium silicate polymorphs have been performed using density functional theory at B3LYP level. Total-energy calculations and geometry optimizations have been carried out for all phases involved. The following sequence of pressure-driven structural transitions has been found: ${\text{CrVO}}_{4}$-type, $Cmcm$ (in parenthesis the transition pressure), $\ensuremath{\rightarrow}$ zircon-type, $I{4}_{1}/amd$ (0.8 GPa), $\ensuremath{\rightarrow}$ scheelite-type, $I{4}_{1}/a$ (3.8 GPa). At higher pressure the last phase is found to be stable at least up to 25 GPa. The equation of state of the different polymorphs is also reported. We found that t…

Bulk modulusMaterials scienceEquation of state (cosmology)Phase (matter)ThermodynamicsOrthorhombic crystal systemDensity functional theoryDielectricElectronic structureCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsAmbient pressurePhysical Review B
researchProduct

High-pressure x-ray diffraction andab initiostudy ofNi2Mo3N,Pd2Mo3N,Pt2Mo3N,Co3Mo3N, andFe3Mo3N: Two families of ultra-incompressible bimetallic inte…

2010

We have studied by means of high-pressure x-ray diffraction the structural stability of ${\text{Ni}}_{2}{\text{Mo}}_{3}\text{N}$, ${\text{Co}}_{3}{\text{Mo}}_{3}\text{N}$, and ${\text{Fe}}_{3}{\text{Mo}}_{3}\text{N}$. We also report ab initio computing modeling of the high-pressure properties of these compounds, ${\text{Pd}}_{2}{\text{Mo}}_{3}\text{N}$ and ${\text{Pt}}_{2}{\text{Mo}}_{3}\text{N}$. We have found that the nitrides remain stable in the ambient-pressure cubic structure at least up to 50 GPa and determined their equation of state. All of them have a bulk modulus larger than 300 GPa. Single-crystal elastic constants have been calculated in order to quantify the stiffness of the i…

Bulk modulusMaterials scienceEquation of state (cosmology)SpinelAb initioOrder (ring theory)Nitrideengineering.materialCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsCrystallographyVickers hardness testX-ray crystallographyengineeringPhysical Review B
researchProduct

Pressure-induced phase transitions in AgClO4

2011

11 pags, 9 figs, 4 tabs. -- PACS number(s): 62.50.−p, 64.70.K−, 61 .50.Ks, 64.30.−t

Chemical Physics (physics.chem-ph)Condensed Matter - Materials SciencePhase transitionMaterials scienceCondensed matter physicsEquation of state (cosmology)Materials--Propietats mecàniquesMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesOrder (ring theory)Condensed Matter PhysicsX-ray diffractionElectronic Optical and Magnetic MaterialsAgClO4Condensed Matter::Materials ScienceTetragonal crystal systemPhysics - Chemical PhysicsX-ray crystallographyPressureCondensed Matter::Strongly Correlated ElectronsOrthorhombic crystal systemDensity functional theoryMaterials--Mechanical propertiesMonoclinic crystal system
researchProduct

High-pressure structural phase transitions in CuWO4

2010

We study the effects of pressure on the structural, vibrational, and magnetic behavior of cuproscheelite. We performed powder x-ray diffraction and Raman spectroscopy experiments up to 27 GPa as well as ab initio total-energy and lattice-dynamics calculations. Experiments provide evidence that a structural phase transition takes place at 10 GPa from the low-pressure triclinic phase (P-1) to a monoclinic wolframite-type structure (P2/c). Calculations confirmed this finding and indicate that the phase transformation involves a change in the magnetic order. In addition, the equation of state for the triclinic phase is determined: V0 = 132.8(2) A3, B0 = 139 (6) GPa and = 4. Furthermore, experim…

Condensed Matter - Materials SciencePhase transitionMaterials scienceCondensed matter physicsEquation of state (cosmology)Ab initioMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesTriclinic crystal systemCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsCondensed Matter - Other Condensed MatterCrystallographyPhase (matter)X-ray crystallographyOther Condensed Matter (cond-mat.other)Monoclinic crystal systemSolid solution
researchProduct

Theory of warm ionized gases: Equation of state and kinetic Schottky anomaly

2013

Based on accurate Lennard-Jones type interaction potentials, we derive a closed set of state equations for the description of warm atomic gases in the presence of ionization processes. The specific heat is predicted to exhibit peaks in correspondence to single and multiple ionizations. Such kinetic analogue in atomic gases of the Schottky anomaly in solids is enhanced at intermediate and low atomic densities. The case of adiabatic compression of noble gases is analyzed in detail and the implications on sonoluminescence are discussed. In particular, the predicted plasma electron density in a sonoluminescent bubble turns out to be in good agreement with the value measured in recent experiment…

Condensed Matter::Quantum GasesPhysicsEquation of stateBubbleFOS: Physical sciencesKinetic energy01 natural sciences7. Clean energyHeat capacityPhysics - Plasma Physicssingle-bubble sonoluminescence ; plasma ; cavitationCondensed Matter - Other Condensed MatterPlasma Physics (physics.plasm-ph)SonoluminescenceIonization0103 physical sciencesPhysics::Atomic and Molecular ClustersAtomic physics010306 general physicsAdiabatic process010303 astronomy & astrophysicsSchottky anomalyOther Condensed Matter (cond-mat.other)Physical Review E
researchProduct

Computer Simulations and Coarse-Grained Molecular Models Predicting the Equation of State of Polymer Solutions

2010

Monte Carlo and molecular dynamics simulations are, in principle, powerful tools for carrying out the basic task of statistical thermodynamics, namely the prediction of macroscopic properties of matter from suitable models of effective interactions between atoms and molecules. The state of the art of this approach is reviewed, with an emphasis on solutions of rather short polymer chains (such as alkanes) in various solvents. Several methods of constructing coarse-grained models of the simple bead–spring type will be mentioned, using input either from atomistic models (considering polybutadiene as an example) or from experiment. Also, the need to have corresponding coarse-grained models of t…

Condensed Matter::Soft Condensed Matterchemistry.chemical_classificationQuantitative Biology::BiomoleculesPhase transitionMolecular dynamicsEquation of statechemistryMonte Carlo methodAtoms in moleculesPolymerStatistical physicsGranularityLattice model (physics)
researchProduct

GW170817: Measurements of Neutron Star Radii and Equation of State

2018

On 17 August 2017, the LIGO and Virgo observatories made the first direct detection of gravitational waves from the coalescence of a neutron star binary system. The detection of this gravitational-wave signal, GW170817, offers a novel opportunity to directly probe the properties of matter at the extreme conditions found in the interior of these stars. The initial, minimal-assumption analysis of the LIGO and Virgo data placed constraints on the tidal effects of the coalescing bodies, which were then translated to constraints on neutron star radii. Here, we expand upon previous analyses by working under the hypothesis that both bodies were neutron stars that are described by the same equation…

Dewey Decimal Classification::500 | Naturwissenschaften::550 | Geowissenschaftenneutron star: binaryAstronomyGeneral Physics and AstronomyAstrophysics01 natural sciencesGeneral Relativity and Quantum CosmologyGRAVITATIONAL-WAVESGW170817BINARIESddc:550DENSELIGODENSE MATTEREquation of State010303 astronomy & astrophysicsQCQBHigh Energy Astrophysical Phenomena (astro-ph.HE)astro-ph.HEPhysicsNeutron Star RadiusPhysicsGravitational effectsEquations of stateParametrizationsElectromagnetic observationsGravitational-wave signals3. Good healthQUADRUPOLE-MOMENTSMacroscopic propertiesPhysical Sciences[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Gravitational wave sourceAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaEquations of state of nuclear matterGravitational wavesaturation: densityBinary neutron starsNUCLEON MATTEREquations of state of nuclear matter; Gravitational wave sources; Gravitational waves; Nuclear matter in neutron starsGeneral relativitygr-qcAstrophysics::High Energy Astrophysical PhenomenaGW170817 Neutron Star Radius Equation of StatePhysics Multidisciplinaryneutron star: spinFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic AstrophysicsGravity wavesgravitational radiation: direct detectionGravitation and AstrophysicsNuclear matter in neutron starsGravitational waveselectromagnetic field: productionPhysics and Astronomy (all)Pulsargalaxy: binary0103 physical sciencesddc:530NeutronMASSESSTFCequation of state: parametrizationAstrophysics::Galaxy AstrophysicsNeutronsExtreme conditionsGravitational wave sourcesEquation of stateScience & TechnologyNeutron Star Interior Composition Explorer010308 nuclear & particles physicsGravitational wavegravitational radiationRCUKFlocculationSaturation densityUNIVERSAL RELATIONSStarsLIGOgravitational radiation detectorNeutron starStarsVIRGOPhysics and Astronomygravitational radiation: emissionneutron star: binary: coalescenceDewey Decimal Classification::500 | Naturwissenschaften::530 | Physik[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]MATTER
researchProduct

Comment on “High-pressure x-ray diffraction study of YBO3/Eu3+, GdBO3, and EuBO3: Pressure-induced amorphization in GdBO3” [J. Appl. Phys. 115, 04350…

2014

High-pressure x-ray diffraction studies on vaterite-type borates were reported on the above paper and their room-temperature P-V equation of state (EOS) determined. YBO3/Eu3+ and GdBO3 were found to have bulk moduli around 320 GPa, 90% larger than the bulk modulus obtained for EuBO3. Consequently, it was stated that vaterite-type borates are as incompressible as cubic BN. Such a different compressional behavior of isomorphic borates contradicts the known systematic of related borates. Here, we show that the conclusions reported on the above article could be hindered by experimental errors and artifacts. Ab initio calculations support our criticism giving similar bulk moduli (130–141 GPa) in…

DiffractionBulk modulusEquation of stateAb initio quantum chemistry methodsComputational chemistryChemistryX-ray crystallographyCompressibilityGeneral Physics and AstronomyThermodynamicsElastic modulusModuliJournal of Applied Physics
researchProduct

Ambient-temperature high-pressure-induced ferroelectric phase transition in CaMnTi2O6

2017

The ferroelectric to paraelectric phase transition of multiferroic ${\mathrm{CaMnTi}}_{2}{\mathrm{O}}_{6}$ has been investigated at high pressures and ambient temperature by second-harmonic generation (SHG), Raman spectroscopy, and powder and single-crystal x-ray diffraction. We have found that ${\mathrm{CaMnTi}}_{2}{\mathrm{O}}_{6}$ undergoes a pressure-induced structural phase transition ($P{4}_{2}mc\ensuremath{\rightarrow}P{4}_{2}/nmc$) at $\ensuremath{\sim}7\phantom{\rule{0.16em}{0ex}}\mathrm{GPa}$ to the same paraelectric structure found at ambient pressure and ${T}_{c}=630\phantom{\rule{0.16em}{0ex}}\mathrm{K}$. The continuous linear decrease of the SHG intensity that disappears at 7 …

DiffractionBulk modulusPhase transitionMaterials scienceEquation of state (cosmology)02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesFerroelectricitysymbols.namesakeCrystallography0103 physical sciencessymbolsMultiferroics010306 general physics0210 nano-technologyRaman spectroscopyIntensity (heat transfer)Physical Review B
researchProduct

High-Pressure High-Temperature Stability and Thermal Equation of State of Zircon-Type Erbium Vanadate.

2018

Inorganic chemistry 57(21), 14005 - 14012 (2018). doi:10.1021/acs.inorgchem.8b01808

DiffractionDYNAMICSEquation of statePhase boundaryThermodynamics02 engineering and technologyzircon010402 general chemistry01 natural sciencesThermal expansionInorganic Chemistrychemistry.chemical_compoundX-RAY-DIFFRACTIONPhase (matter)Physical and Theoretical ChemistryChemistryX-RAY-DIFFRACTION; DYNAMICS021001 nanoscience & nanotechnology5400104 chemical scienceshigh pressureScheeliteX-ray crystallographyddc:5400210 nano-technologyZirconInorganic chemistry
researchProduct