6533b860fe1ef96bd12c3ad5
RESEARCH PRODUCT
Theory of warm ionized gases: Equation of state and kinetic Schottky anomaly
Fabrizio IlluminatiFabrizio IlluminatiSalvatore Marco GiampaoloAntonio Capoluposubject
Condensed Matter::Quantum GasesPhysicsEquation of stateBubbleFOS: Physical sciencesKinetic energy01 natural sciences7. Clean energyHeat capacityPhysics - Plasma Physicssingle-bubble sonoluminescence ; plasma ; cavitationCondensed Matter - Other Condensed MatterPlasma Physics (physics.plasm-ph)SonoluminescenceIonization0103 physical sciencesPhysics::Atomic and Molecular ClustersAtomic physics010306 general physicsAdiabatic process010303 astronomy & astrophysicsSchottky anomalyOther Condensed Matter (cond-mat.other)description
Based on accurate Lennard-Jones type interaction potentials, we derive a closed set of state equations for the description of warm atomic gases in the presence of ionization processes. The specific heat is predicted to exhibit peaks in correspondence to single and multiple ionizations. Such kinetic analogue in atomic gases of the Schottky anomaly in solids is enhanced at intermediate and low atomic densities. The case of adiabatic compression of noble gases is analyzed in detail and the implications on sonoluminescence are discussed. In particular, the predicted plasma electron density in a sonoluminescent bubble turns out to be in good agreement with the value measured in recent experiments.
year | journal | country | edition | language |
---|---|---|---|---|
2013-03-21 | Physical Review E |