0000000000084045

AUTHOR

Salvatore Marco Giampaolo

n-cluster models in a transverse magnetic field

In this paper we analize a family of one dimensional fully analytically solvable models, named the n-cluster models in a transverse magnetic field, in which a many-body cluster interaction competes with a uniform transverse magnetic field. These models, independently by the cluster size n + 2, exibit a quantum phase transition, that separates a paramagnetic phase from a cluster one, that corresponds to a nematic ordered phase or a symmetry-protected topological ordered phase for even or odd n respectively. Due to the symmetries of the spin correlation functions, we prove that these models have no genuine n+2-partite entanglement. On the contrary, a non vanishing concurrence arises between s…

research product

Probing Quantum Frustrated Systems via Factorization of the Ground State

The existence of definite orders in frustrated quantum systems is related rigorously to the occurrence of fully factorized ground states below a threshold value of the frustration. Ground-state separability thus provides a natural measure of frustration: strongly frustrated systems are those that cannot accommodate for classical-like solutions. The exact form of the factorized ground states and the critical frustration are determined for various classes of nonexactly solvable spin models with different spatial ranges of the interactions. For weak frustration, the existence of disentangling transitions determines the range of applicability of mean-field descriptions in biological and physica…

research product

Global-to-local incompatibility, monogamy of entanglement, and ground-state dimerization: Theory and observability of quantum frustration in systems with competing interactions

Frustration in quantum many body systems is quantified by the degree of incompatibility between the local and global orders associated, respectively, to the ground states of the local interaction terms and the global ground state of the total many-body Hamiltonian. This universal measure is bounded from below by the ground-state bipartite block entanglement. For many-body Hamiltonians that are sums of two-body interaction terms, a further inequality relates quantum frustration to the pairwise entanglement between the constituents of the local interaction terms. This additional bound is a consequence of the limits imposed by monogamy on entanglement shareability. We investigate the behavior …

research product

Adiabatic quantum simulation with a segmented ion trap: Application to long-distance entanglement in quantum spin systems

We investigate theoretically systems of ions in segmented linear Paul traps for the quantum simulation of quantum spin models with tunable interactions. The scheme is entirely general and can be applied to the realization of arbitrary spin-spin interactions. As a specific application we discuss in detail the quantum simulation of models that exhibit long-distance entanglement in the ground state. We show how tailoring of the axial trapping potential allows for generating spin-spin coupling patterns that are suitable to create long-distance entanglement. We discuss how suitable sequences of microwave pulses can implement Trotter expansions and realize various kinds of effective spin-spin int…

research product

Frustration, Entanglement, and Correlations in Quantum Many Body Systems

We derive an exact lower bound to a universal measure of frustration in degenerate ground states of quantum many-body systems. The bound results in the sum of two contributions: entanglement and classical correlations arising from local measurements. We show that average frustration properties are completely determined by the behavior of the maximally mixed ground state. We identify sufficient conditions for a quantum spin system to saturate the bound, and for models with twofold degeneracy we prove that average and local frustration coincide.

research product

Long-distance entanglement and quantum teleportation in coupled-cavity arrays

We introduce quantum spin models whose ground states allow for sizeable entanglement between distant spins. We discuss how spin models with global end-to-end entanglement realize quantum teleportation channels with optimal compromise between scalability and resilience to thermal decoherence, and can be implemented straightforwardly in suitably engineered arrays of coupled optical cavities.

research product

Surface entanglement in quantum spin networks

We study the ground-state entanglement in systems of spins forming the boundary of a quantum spin network in arbitrary geometries and dimensionality. We show that as long as they are weakly coupled to the bulk of the network, the surface spins are strongly entangled, even when distant and non directly interacting, thereby generalizing the phenomenon of long-distance entanglement occurring in quantum spin chains. Depending on the structure of the couplings between surface and bulk spins, we discuss in detail how the patterns of surface entanglement can range from multi-pair bipartite to fully multipartite. In the context of quantum information and communication, these results find immediate …

research product

Universal aspects in the behavior of the entanglement spectrum in one dimension: Scaling transition at the factorization point and ordered entangled structures

We investigate the scaling of the entanglement spectrum and of the R\'enyi block entropies and determine its universal aspects in the ground state of critical and noncritical one-dimensional quantum spin models. In all cases, the scaling exhibits an oscillatory behavior that terminates at the factorization point and whose frequency is universal. Parity effects in the scaling of the R\'enyi entropies for gapless models at zero field are thus shown to be a particular case of such universal behavior. Likewise, the absence of oscillations for the Ising chain in transverse field is due to the vanishing value of the factorizing field for this particular model. In general, the transition occurring…

research product

Quantifying nonclassicality: global impact of local unitary evolutions

We show that only those composite quantum systems possessing nonvanishing quantum correlations have the property that any nontrivial local unitary evolution changes their global state. We derive the exact relation between the global state change induced by local unitary evolutions and the amount of quantum correlations. We prove that the minimal change coincides with the geometric measure of discord (defined via the Hilbert- Schmidt norm), thus providing the latter with an operational interpretation in terms of the capability of a local unitary dynamics to modify a global state. We establish that two-qubit Werner states are maximally quantum correlated, and are thus the ones that maximize t…

research product

Quantum localization and bound state formation in Bose-Einstein condensates

We discuss the possibility of exponential quantum localization in systems of ultracold bosonic atoms with repulsive interactions in open optical lattices without disorder. We show that exponential localization occurs in the maximally excited state of the lowest energy band. We establish the conditions under which the presence of the upper energy bands can be neglected, determine the successive stages and the quantum phase boundaries at which localization occurs, and discuss schemes to detect it experimentally by visibility measurements. The discussed mechanism is a particular type of quantum localization that is intuitively understood in terms of the interplay between nonlinearity and a bou…

research product

Characterizing and Quantifying Frustration in Quantum Many-Body Systems

We present a general scheme for the study of frustration in quantum systems. We introduce a universal measure of frustration for arbitrary quantum systems and we relate it to a class of entanglement monotones via an exact inequality. If all the (pure) ground states of a given Hamiltonian saturate the inequality, then the system is said to be inequality saturating. We introduce sufficient conditions for a quantum spin system to be inequality saturating and confirm them with extensive numerical tests. These conditions provide a generalization to the quantum domain of the Toulouse criteria for classical frustration-free systems. The models satisfying these conditions can be reasonably identifi…

research product

Theory of ground state factorization in quantum cooperative systems.

We introduce a general analytic approach to the study of factorization points and factorized ground states in quantum cooperative systems. The method allows to determine rigorously existence, location, and exact form of separable ground states in a large variety of, generally non-exactly solvable, spin models belonging to different universality classes. The theory applies to translationally invariant systems, irrespective of spatial dimensionality, and for spin-spin interactions of arbitrary range.

research product

Discord of response

The presence of quantum correlations in a quantum state is related to the state response to local unitary perturbations. Such response is quantified by the distance between the unperturbed and perturbed states, minimized with respect to suitably identified sets of local unitary operations. In order to be a bona fide measure of quantum correlations, the distance function must be chosen among those that are contractive under completely positive and trace preserving maps. The most relevant instances of such physically well behaved metrics include the trace, the Bures, and the Hellinger distance. To each of these metrics one can associate the corresponding discord of response, namely the trace,…

research product

Theory of warm ionized gases: Equation of state and kinetic Schottky anomaly

Based on accurate Lennard-Jones type interaction potentials, we derive a closed set of state equations for the description of warm atomic gases in the presence of ionization processes. The specific heat is predicted to exhibit peaks in correspondence to single and multiple ionizations. Such kinetic analogue in atomic gases of the Schottky anomaly in solids is enhanced at intermediate and low atomic densities. The case of adiabatic compression of noble gases is analyzed in detail and the implications on sonoluminescence are discussed. In particular, the predicted plasma electron density in a sonoluminescent bubble turns out to be in good agreement with the value measured in recent experiment…

research product

Entanglement amplification in the nonperturbative dynamics of modular quantum systems

We analyze the conditions for entanglement amplification between distant and not directly interacting quantum objects by their common coupling to media with static modular structure and subject to a local (single-bond) quenched dynamics. We show that in the non-perturbative regime of the dynamics the initial end-to-end entanglement is strongly amplified and, moreover, can be distributed efficiently between distant objects. Due to its intrinsic local and non-perturbative nature the dynamics is fast and robust against thermal fluctuations, and its control is undemanding. We show that the origin of entanglement amplification lies in the interference of the ground state and at most one of the l…

research product

Mutual information and spontaneous symmetry breaking

We show that the metastable, symmetry-breaking ground states of quantum many-body Hamiltonians have vanishing quantum mutual information between macroscopically separated regions, and are thus the most classical ones among all possible quantum ground states. This statement is obvious only when the symmetry-breaking ground states are simple product states, e.g. at the factorization point. On the other hand, symmetry-breaking states are in general entangled along the entire ordered phase, and to show that they actually feature the least macroscopic correlations compared to their symmetric superpositions is highly non trivial. We prove this result in general, by considering the quantum mutual …

research product