Search results for "Equidistribution"

showing 8 items of 8 documents

Équidistribution non archimédienne et actions de groupes sur les arbres = Non-Archimedean equidistribution and group actions on trees

2016

We give equidistribution results of elements of function fields over finite fields, and of quadratic irrationals over these fields, in their completed local fields. We deduce these results from equidistribution theorems of common perpendiculars in quotients of trees by lattices in their automorphism groups, proved by using ergodic properties of the discrete geodesic flow. Nous donnons des résultats d'équidistribution d'éléments de corps de fonctions sur des corps finis, et d'irrationnels quadratiques sur ces corps, dans leurs corps locaux complétés. Nous déduisons ces résultats de théorèmes d'équidistribution de perpendiculaires communes dans des quotients d'arbres par des réseaux de leur g…

Mathematics::History and Overviewnon-archimedean equidistribution
researchProduct

Rigidité, comptage et équidistribution de chaînes de Cartan quaternioniques

2020

We prove an analog of Cartan's theorem, saying that the chain-preserving transformations of the boundary of the quaternionic hyperbolic spaces are projective transformations. We give a counting and equidistribution result for the orbits of arithmetic chains in the quaternionic Heisenberg group.; Nous montrons un analogue d'un théorème de Cartan, disant que les transformations préservant les chaînes sur le bord d'un espace hyperbolique quaternionien est une transformation projective. Nous donnons un résultat de comptage et d'équidistribution pour une orbite de chaînes arithmétiques dans le groupe de Heisenberg quaternionique.

Mathematics - Differential GeometrylukuteoriaAlgebra and Number TheoryMathematics - Number TheoryApplied Mathematicsryhmäteoria[MATH.MATH-NT]Mathematics [math]/Number Theory [math.NT][MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR]quaternionic Heisenberg groupdifferentiaaligeometriaquaternionic hyperbolic geometryequidistributionsub-Riemannian geometry[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG]aritmetiikkacountingCartan chainGeometry and TopologyMathematics::Differential GeometryCygan distanceMathematics - Group TheoryAnalysis11N45 (Primary) 11E39 11F06 11N45 20G20 53C17 53C55 (Secondary)
researchProduct

Counting and equidistribution in quaternionic Heisenberg groups

2020

AbstractWe develop the relationship between quaternionic hyperbolic geometry and arithmetic counting or equidistribution applications, that arises from the action of arithmetic groups on quaternionic hyperbolic spaces, especially in dimension 2. We prove a Mertens counting formula for the rational points over a definite quaternion algebra A over ${\mathbb{Q}}$ in the light cone of quaternionic Hermitian forms, as well as a Neville equidistribution theorem of the set of rational points over A in quaternionic Heisenberg groups.

Mathematics - Differential GeometryPure mathematicsMathematics::Dynamical SystemsGeneral MathematicsHyperbolic geometryMathematics::Number Theory[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]Dimension (graph theory)11E39 11F06 11N45 20G20 53C17 53C22 53C55[MATH.MATH-DS] Mathematics [math]/Dynamical Systems [math.DS]Equidistribution theorem01 natural sciences[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR]differentiaaligeometriaSet (abstract data type)Light cone0103 physical sciences0101 mathematics[MATH.MATH-GR] Mathematics [math]/Group Theory [math.GR]MathematicslukuteoriaQuaternion algebraMathematics - Number Theory010102 general mathematicsryhmäteoriaHermitian matrix[MATH.MATH-NT]Mathematics [math]/Number Theory [math.NT]Action (physics)010307 mathematical physicsMathematics::Differential Geometry[MATH.MATH-NT] Mathematics [math]/Number Theory [math.NT]
researchProduct

An Extension of Weyl’s Equidistribution Theorem to Generalized Polynomials and Applications

2020

Author's accepted manuscript. This is a pre-copyedited, author-produced version of an article accepted for publication in International Mathematics Research Notices following peer review. The version of record Bergelson, V., Knutson, I. J. H. & Son, Y. (2020). An Extension of Weyl’s Equidistribution Theorem to Generalized Polynomials and Applications. International Mathematics Research Notices, 2021(19), 14965-15018 is available online at: https://academic.oup.com/imrn/article/2021/19/14965/5775499 and https://doi.org/10.1093/imrn/rnaa035. Generalized polynomials are mappings obtained from the conventional polynomials by the use of the operations of addition and multiplication and taking th…

SequenceMathematics::Number TheoryGeneral Mathematics010102 general mathematicsVinogradovZero (complex analysis)Extension (predicate logic)Equidistribution theoremLambda01 natural sciencesVDP::Matematikk og Naturvitenskap: 400::Matematikk: 410CombinatoricsInteger0103 physical sciencesMultiplication010307 mathematical physics0101 mathematicsMathematics
researchProduct

Counting and equidistribution in Heisenberg groups

2014

We strongly develop the relationship between complex hyperbolic geometry and arithmetic counting or equidistribution applications, that arises from the action of arithmetic groups on complex hyperbolic spaces, especially in dimension $2$. We prove a Mertens' formula for the integer points over a quadratic imaginary number fields $K$ in the light cone of Hermitian forms, as well as an equidistribution theorem of the set of rational points over $K$ in Heisenberg groups. We give a counting formula for the cubic points over $K$ in the complex projective plane whose Galois conjugates are orthogonal and isotropic for a given Hermitian form over $K$, and a counting and equidistribution result for …

Mathematics - Differential GeometryPure mathematicsGeneral MathematicsHyperbolic geometryMathematics::Number Theory[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]11E39 11F06 11N45 20G20 53C17 53C22 53C55chainEquidistribution theorem01 natural sciencesHeisenberg groupequidistributioncommon perpendicularIntegerLight cone0103 physical sciencesHeisenberg groupcubic point0101 mathematicsCygan distanceMertens formulaComplex projective planeMathematicsDiscrete mathematicsAMS codes: 11E39 11F06 11N45 20G20 53C17 53C22 53C55Mathematics - Number TheorySesquilinear formHeisenberg groups010102 general mathematicsHermitian matrixcomplex hyperbolic geometry[MATH.MATH-NT]Mathematics [math]/Number Theory [math.NT]sub-Riemannian geometry[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG]counting010307 mathematical physics
researchProduct

Counting common perpendicular arcs in negative curvature

2013

Let $D^-$ and $D^+$ be properly immersed closed locally convex subsets of a Riemannian manifold with pinched negative sectional curvature. Using mixing properties of the geodesic flow, we give an asymptotic formula as $t\to+\infty$ for the number of common perpendiculars of length at most $t$ from $D^-$ to $D^+$, counted with multiplicities, and we prove the equidistribution in the outer and inner unit normal bundles of $D^-$ and $D^+$ of the tangent vectors at the endpoints of the common perpendiculars. When the manifold is compact with exponential decay of correlations or arithmetic with finite volume, we give an error term for the asymptotic. As an application, we give an asymptotic form…

Mathematics - Differential GeometryGeneral Mathematics[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]37D40 37A25 53C22 30F4001 natural sciencesDomain (mathematical analysis)Bowen-Margulis measurecommon perpendicularequidistributiondecay of correlation0502 economics and businessortholength spectrummixingAsymptotic formulaSectional curvatureTangent vectorMathematics - Dynamical Systems0101 mathematicsExponential decayskinning measurelaskeminenMathematicsconvexityApplied Mathematicsta111010102 general mathematics05 social sciencesMathematical analysisRegular polygonnegative curvatureRiemannian manifoldGibbs measureManifoldKleinian groups[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG]countingMathematics::Differential Geometrygeodesic arc050203 business & management
researchProduct

Mahonian STAT on words

2016

In 2000, Babson and Steingrimsson introduced the notion of what is now known as a permutation vincular pattern, and based on it they re-defined known Mahonian statistics and introduced new ones, proving or conjecturing their Mahonity. These conjectures were proved by Foata and Zeilberger in 2001, and by Foata and Randrianarivony in 2006.In 2010, Burstein refined some of these results by giving a bijection between permutations with a fixed value for the major index and those with the same value for STAT , where STAT is one of the statistics defined and proved to be Mahonian in the 2000 Babson and Steingrimsson's paper. Several other statistics are preserved as well by Burstein's bijection.At…

FOS: Computer and information sciencesQA75[ INFO ] Computer Science [cs]Discrete Mathematics (cs.DM)Major index0102 computer and information sciencesMathematical Analysis01 natural sciencesWords and PermutationsCombinatorial problemsEquidistributionTheoretical Computer ScienceCombinatoricssymbols.namesakePermutationBijectionsFOS: MathematicsMathematics - CombinatoricsMathematical proofs[INFO]Computer Science [cs]0101 mathematicsStatisticMathematicsStatisticZ665Algebraic combinatoricsMathematics::CombinatoricsFormal power seriesPatternPermutationsEulerian path16. Peace & justiceComputer Science Applications010101 applied mathematics010201 computation theory & mathematicsCombinatoricsSignal ProcessingsymbolsBijectionCombinatorics (math.CO)Information SystemsComputer Science - Discrete Mathematics
researchProduct

Equilibrium measures for uniformly quasiregular dynamics

2012

We establish the existence and fundamental properties of the equilibrium measure in uniformly quasiregular dynamics. We show that a uniformly quasiregular endomorphism $f$ of degree at least 2 on a closed Riemannian manifold admits an equilibrium measure $\mu_f$, which is balanced and invariant under $f$ and non-atomic, and whose support agrees with the Julia set of $f$. Furthermore we show that $f$ is strongly mixing with respect to the measure $\mu_f$. We also characterize the measure $\mu_f$ using an approximation property by iterated pullbacks of points under $f$ up to a set of exceptional initial points of Hausdorff dimension at most $n-1$. These dynamical mixing and approximation resu…

Pure mathematicsEndomorphismMathematics - Complex VariablesMathematics::Complex VariablesGeneral Mathematicsta111mappings010102 general mathematicsEquidistribution theoremRiemannian manifoldintegrability01 natural sciencesJulia setMeasure (mathematics)manifoldsPotential theory30C65 (Primary) 37F10 30D05 (Secondary)Iterated functionHausdorff dimension0103 physical sciences010307 mathematical physicsMathematics - Dynamical Systems0101 mathematicsMathematicsJournal of the London Mathematical Society
researchProduct