Search results for "Euclidean"

showing 10 items of 185 documents

A quasi-finite basis for multi-loop Feynman integrals

2014

We present a new method for the decomposition of multi-loop Euclidean Feynman integrals into quasi-finite Feynman integrals. These are defined in shifted dimensions with higher powers of the propagators, make explicit both infrared and ultraviolet divergences, and allow for an immediate and trivial expansion in the parameter of dimensional regularization. Our approach avoids the introduction of spurious structures and thereby leaves integrals particularly accessible to direct analytical integration techniques. Alternatively, the resulting convergent Feynman parameter integrals may be evaluated numerically. Our approach is guided by previous work by the second author but overcomes practical …

High Energy Physics - TheoryQuantum chromodynamicsPhysicsNuclear and High Energy PhysicsBasis (linear algebra)FOS: Physical sciencesPropagatorHigh Energy Physics - Phenomenologysymbols.namesakeDimensional regularizationHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - Theory (hep-th)Euclidean geometrysymbolsApplied mathematicsFeynman diagramIntegration by partsReduction (mathematics)Journal of High Energy Physics
researchProduct

Solution for the fragment-size distribution in a crack-branching model of fragmentation

2007

It is well established that rapidly propagating cracks in brittle material are unstable such that they generate side branches. It is also known that cracks are attracted by free surfaces, which means that they attract each other. This information is used here to formulate a generic model of fragmentation in which the small-size part of the fragment-size distribution results from merged crack branches in the damage zones along the paths of the propagating cracks. This model is solved under rather general assumptions for the fragment-size distribution. The model leads to a generic distribution S(-gamma) exp(-S/S(0)) for fragment sizes S, where gamma = 2d-1/d with d the Euclidean dimension, an…

Fragment sizePhysicsBrittlenessFragmentation (mass spectrometry)Euclidean geometryGeometryDependent parameterBranching (polymer chemistry)Physical Review E
researchProduct

Generalized Hausdorff dimension distortion in Euclidean spaces under Sobolev mappings

2010

Abstract We investigate how the integrability of the derivatives of Orlicz–Sobolev mappings defined on open subsets of R n affect the sizes of the images of sets of Hausdorff dimension less than n. We measure the sizes of the image sets in terms of generalized Hausdorff measures.

Mathematics::Functional AnalysisPure mathematicsApplied Mathematicsta111Hausdorff spaceMathematics::General Topology30C62Measure (mathematics)Image (mathematics)Dimension distortionMappings of finite distortionDistortion (mathematics)Sobolev spaceMathematics - Classical Analysis and ODEsHausdorff dimensionEuclidean geometryClassical Analysis and ODEs (math.CA)FOS: MathematicsSobolev mappingsAnalysisMathematicsJournal of Mathematical Analysis and Applications
researchProduct

Connections and geodesics in the space of metrics

2015

We argue that the exponential relation $g_{\mu\nu} = \bar{g}_{\mu\rho}\big(\mathrm{e}^h\big)^\rho{}_\nu$ is the most natural metric parametrization since it describes geodesics that follow from the basic structure of the space of metrics. The corresponding connection is derived, and its relation to the Levi-Civita connection and the Vilkovisky-DeWitt connection is discussed. We address the impact of this geometric formalism on quantum gravity applications. In particular, the exponential parametrization is appropriate for constructing covariant quantities like a reparametrization invariant effective action in a straightforward way. Furthermore, we reveal an important difference between Eucli…

High Energy Physics - TheoryPhysicsNuclear and High Energy PhysicsGeodesicFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Mathematical Physics (math-ph)General Relativity and Quantum CosmologyExponential functionCombinatoricsGeneral Relativity and Quantum CosmologyFormalism (philosophy of mathematics)High Energy Physics - Theory (hep-th)Quantum mechanicsEuclidean geometryQuantum gravityCovariant transformationEffective actionMathematical PhysicsPhysical Review D
researchProduct

Distance Functions, Clustering Algorithms and Microarray Data Analysis

2010

Distance functions are a fundamental ingredient of classification and clustering procedures, and this holds true also in the particular case of microarray data. In the general data mining and classification literature, functions such as Euclidean distance or Pearson correlation have gained their status of de facto standards thanks to a considerable amount of experimental validation. For microarray data, the issue of which distance function works best has been investigated, but no final conclusion has been reached. The aim of this extended abstract is to shed further light on that issue. Indeed, we present an experimental study, involving several distances, assessing (a) their intrinsic sepa…

Clustering high-dimensional dataFuzzy clusteringSettore INF/01 - Informaticabusiness.industryCorrelation clusteringMachine learningcomputer.software_genrePearson product-moment correlation coefficientRanking (information retrieval)Euclidean distancesymbols.namesakeClustering distance measuressymbolsArtificial intelligenceData miningbusinessCluster analysiscomputerMathematicsDe facto standard
researchProduct

Euclidean spaces as weak tangents of infinitesimally Hilbertian metric spaces with Ricci curvature bounded below

2013

We show that in any infinitesimally Hilbertian CD* (K,N)-space at almost every point there exists a Euclidean weak tangent, i.e., there exists a sequence of dilations of the space that converges to Euclidean space in the pointed measured Gromov-Hausdorff topology. The proof follows by considering iterated tangents and the splitting theorem for infinitesimally Hilbertian CD* (0,N)-spaces.

Mathematics - Differential GeometryPure mathematicsGeneral MathematicsSpace (mathematics)01 natural sciencesMeasure (mathematics)Mathematics - Metric Geometry0103 physical sciencesFOS: MathematicsMathematics::Metric Geometry0101 mathematics[MATH.MATH-MG]Mathematics [math]/Metric Geometry [math.MG]tangent spaces; non-smooth geometryRicci curvatureMathematics51F99-53B99non-smooth geometrySequenceEuclidean spaceApplied MathematicsHilbertian spaces010102 general mathematicstangent spacesTangentMetric Geometry (math.MG)Euclidean spacesDifferential Geometry (math.DG)[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG]weak tangentsBounded functionSplitting theorem010307 mathematical physics
researchProduct

On proper branched coverings and a question of Vuorinen

2022

We study global injectivity of proper branched coverings from the open Euclidean n$n$-ball onto an open subset of the Euclidean n$n$-space in the case where the branch set is compact. In particular, we show that such mappings are homeomorphisms when n=3$n=3$ or when the branch set is empty. This gives a positive answer to the corresponding cases of a question of Vuorinen. Peer reviewed

Mathematics - Complex VariablesGeneral Mathematicseuklidinen geometriaGeometric Topology (math.GT)Euclidean geometryMathematics - Geometric TopologyMAPSFOS: Mathematics111 MathematicsHigh Energy Physics::ExperimentComplex Variables (math.CV)SETMONODROMY57M12 30C65 57M30
researchProduct

Smoothness spaces of higher order on lower dimensional subsets of the Euclidean space

2015

We study Sobolev type spaces defined in terms of sharp maximal functions on Ahlfors regular subsets of R n and the relation between these spaces and traces of classical Sobolev spaces. This extends in a certain way the results of Shvartsman (20) to the case of lower dimensional subsets of the Euclidean space.

Pure mathematicsEight-dimensional spaceEuclidean spaceGeneral Mathematics010102 general mathematicsMathematical analysisSpace (mathematics)01 natural sciencesSobolev inequalitySobolev space0103 physical sciencesBesov spaceInterpolation space010307 mathematical physicsBirnbaum–Orlicz space0101 mathematicsMathematicsMathematische Nachrichten
researchProduct

Dynamics of the scenery flow and geometry of measures

2015

We employ the ergodic theoretic machinery of scenery flows to address classical geometric measure theoretic problems on Euclidean spaces. Our main results include a sharp version of the conical density theorem, which we show to be closely linked to rectifiability. Moreover, we show that the dimension theory of measure-theoretical porosity can be reduced back to its set-theoretic version, that Hausdorff and packing dimensions yield the same maximal dimension for porous and even mean porous measures, and that extremal measures exist and can be chosen to satisfy a generalized notion of self-similarity. These are sharp general formulations of phenomena that had been earlier found to hold in a n…

Pure mathematicsgeometryMatemáticasGeneral MathematicsDimension (graph theory)CONICAL DENSITIESDynamical Systems (math.DS)Measure (mathematics)Matemática Pura//purl.org/becyt/ford/1 [https]RECITFIABILITYEuclidean geometryClassical Analysis and ODEs (math.CA)FOS: MathematicsErgodic theoryscenery flowMathematics - Dynamical SystemsDIMENSIONMathematicsmatematiikkamathematicsta111measures//purl.org/becyt/ford/1.1 [https]Hausdorff spacePOROSITYConical surfacePrimary 28A80 Secondary 37A10 28A75 28A33Flow (mathematics)Mathematics - Classical Analysis and ODEsFRACTAL DISTRIBUTIONSDimension theorygeometriaCIENCIAS NATURALES Y EXACTAS
researchProduct

Characterisation of upper gradients on the weighted Euclidean space and applications

2020

In the context of Euclidean spaces equipped with an arbitrary Radon measure, we prove the equivalence among several different notions of Sobolev space present in the literature and we characterise the minimal weak upper gradient of all Lipschitz functions.

Pure mathematicsEuclidean spaceApplied MathematicsMathematics::Analysis of PDEsContext (language use)Sobolev spaceLipschitz continuityFunctional Analysis (math.FA)46E35 53C23 26B05differentiaaligeometriaSobolev spaceMathematics - Functional AnalysisMathematics - Analysis of PDEsRadon measureEuclidean geometryFOS: MathematicsWeighted Euclidean spaceDecomposability bundlefunktionaalianalyysiEquivalence (measure theory)MathematicsAnalysis of PDEs (math.AP)
researchProduct