6533b7d8fe1ef96bd1269b21

RESEARCH PRODUCT

Euclidean spaces as weak tangents of infinitesimally Hilbertian metric spaces with Ricci curvature bounded below

Andrea MondinoNicola GigliTapio Rajala

subject

Mathematics - Differential GeometryPure mathematicsGeneral MathematicsSpace (mathematics)01 natural sciencesMeasure (mathematics)Mathematics - Metric Geometry0103 physical sciencesFOS: MathematicsMathematics::Metric Geometry0101 mathematics[MATH.MATH-MG]Mathematics [math]/Metric Geometry [math.MG]tangent spaces; non-smooth geometryRicci curvatureMathematics51F99-53B99non-smooth geometrySequenceEuclidean spaceApplied MathematicsHilbertian spaces010102 general mathematicstangent spacesTangentMetric Geometry (math.MG)Euclidean spacesDifferential Geometry (math.DG)[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG]weak tangentsBounded functionSplitting theorem010307 mathematical physics

description

We show that in any infinitesimally Hilbertian CD* (K,N)-space at almost every point there exists a Euclidean weak tangent, i.e., there exists a sequence of dilations of the space that converges to Euclidean space in the pointed measured Gromov-Hausdorff topology. The proof follows by considering iterated tangents and the splitting theorem for infinitesimally Hilbertian CD* (0,N)-spaces.

10.1515/crelle-2013-0052https://hdl.handle.net/20.500.11850/78555