Search results for "Excitations"

showing 10 items of 22 documents

Many-body perturbation theory calculations using the yambo code

2019

Abstract yambo is an open source project aimed at studying excited state properties of condensed matter systems from first principles using many-body methods. As input, yambo requires ground state electronic structure data as computed by density functional theory codes such as Quantum ESPRESSO and Abinit. yambo’s capabilities include the calculation of linear response quantities (both independent-particle and including electron–hole interactions), quasi-particle corrections based on the GW formalism, optical absorption, and other spectroscopic quantities. Here we describe recent developments ranging from the inclusion of important but oft-neglected physical effects such as electron–phonon i…

BETHE-SALPETER EQUATION02 engineering and technology01 natural sciencesSoftwarereal-time dynamicsGeneral Materials Sciencequasi-particleCondensed Matter - Materials Scienceparallelismelectron-phononreal-time dynamicComputational Physics (physics.comp-ph)021001 nanoscience & nanotechnologySupercomputerMANY-BODY PERTURBATION THEORYCondensed Matter Physicsbethe-salpeter-equationoptical-propertiesoptical propertietemperature-dependence[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]User interface0210 nano-technologyGround statePhysics - Computational Physicsoptical propertiesmonte-carloMaterials scienceExploitFOS: Physical sciencesabinitSettore FIS/03 - Fisica della MateriaComputational scienceKerr effect0103 physical scienceskerr effect010306 general physicselectronic excitationsTHEORETICAL SPECTROSCOPYpolarizationspin and spinorsbusiness.industrysoftwareMaterials Science (cond-mat.mtrl-sci)Rangingelectronic structureABINITInterfacingelectron-phonon; electronic structure; Kerr effect; optical properties; parallelism; real-time dynamics; spin and spinorsbusinessabsorption
researchProduct

Roton-roton crossover in strongly correlated dipolar Bose-nonstnon condensates

2011

We study the pair correlations and excitations of a dipolar Bose gas layer. The anisotropy of the dipole-dipole interaction allows us to tune the strength of pair correlations from strong to weak perpendicular and weak to strong parallel to the layer by increasing the perpendicular trap frequency. This change is accompanied by a roton-roton crossover in the spectrum of collective excitations, from a roton caused by the head-to-tail attraction of dipoles to a roton caused by the side-by-side repulsion, while there is no roton excitation for intermediate trap frequencies. We discuss the nature of these two kinds of rotons and the relation to instabilities of dipolar Bose gases. In both regime…

Condensed Matter::Quantum Gaseseksitaatiot ja supranestevirratCondensed Matter::OtherDynamic properties of condensates excitationsKondensaattien dynaamiset ominaisuudetand superfluid flowCondensed Matter::Mesoscopic Systems and Quantum Hall Effect
researchProduct

Time-dependent density-functional theory in the projector augmented-wave method

2008

We present the implementation of the time-dependent density-functional theory both in linear-response and in time-propagation formalisms using the projector augmented-wave method in real-space grids. The two technically very different methods are compared in the linear-response regime where we found perfect agreement in the calculated photoabsorption spectra. We discuss the strengths and weaknesses of the two methods as well as their convergence properties. We demonstrate different applications of the methods by calculating excitation energies and excited state Born–Oppenheimer potential surfaces for a set of atoms and molecules with the linear-response method and by calculating nonlinear e…

ELECTRONIC EXCITATIONStime propagationGeneral Physics and AstronomySpectral linelaw.inventionlinear responseATOMSlawQuantum mechanicsSPECTRAPhysical and Theoretical ChemistryEXCHANGEEQUATIONSPhysicsREAL-TIMEPhysicsAtoms in moleculesTime-dependent density functional theorytime-dependent density-functional theoryNonlinear systemProjectorRESPONSE THEORYphotoabsorptionExcited statenon-linear responseProjector augmented wave methodDensity functional theoryCLUSTERSAPPROXIMATION
researchProduct

Small-amplitude collective modes of a finite-size unitary Fermi gas in deformed traps

2019

We have investigated collective breathing modes of a unitary Fermi gas in deformed harmonic traps. The ground state is studied by the Superfluid Local Density Approximation (SLDA) and small-amplitude collective modes are studied by the iterative Quasiparticle Random Phase Approximation (QRPA). The results illustrate the evolutions of collective modes of a small system in traps from spherical to elongated or pancake deformations. For small spherical systems, the influences of different SLDA parameters are significant, and, in particular, a large pairing strength can shift up the oscillation frequency of collective mode. The transition currents from QRPA show that the compressional flow patte…

EXCITATIONSCondensed Matter::Quantum GasesPhysicsCondensed matter physics010308 nuclear & particles physicsOscillationfermi gasestiheysfunktionaaliteoriaFOS: Physical sciences114 Physical sciences01 natural sciencesultracold gasesSuperfluidityQuantum Gases (cond-mat.quant-gas)random phase approximationPairing0103 physical sciencesQuasiparticleLocal-density approximationCondensed Matter - Quantum Gases010306 general physicsGround stateFermi gasRandom phase approximationdensity functional theoryPhysical Review A
researchProduct

Pygmy dipole resonance in 124Sn populated by inelastic scattering of 17O

2014

L. Pellegri et al. ; 5 pags. ; 6 figs. ; open access article under the CC BY license. Funded by SCOAP3

Elastic scatteringPhysicsNuclear and High Energy Physics010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaIsoscalarGamma rayInelastic scattering01 natural sciences7. Clean energyResonance (particle physics)lcsh:QC1-999Isospin characterLow-lying electric dipole excitationsIonNuclear physicsDipoleLow-lying electric dipole excitations 124Sn0103 physical sciencesAGATAAtomic physics010306 general physics124Snlcsh:PhysicsPhysics Letters B
researchProduct

Improvement of Hall Effect Current Transducer Metrological Performances in the Presence of Harmonic Distortion

2010

The performance of Hall effect current transducers (HECTs), under distorted waveform conditions, is usually characterized by means of a frequency response test. In this paper, it was investigated if frequency response is able to correctly evaluate the ratio and the phase errors under distorted conditions. Two HECTs, with the accuracy class level of 1% and 0.5%, respectively, were experimentally characterized under two conditions: 1) sinusoidal excitation with frequencies ranging from 50 to 750 Hz, which is the well-known frequency response test, and 2) nonsinusoidal excitation using fundamental frequency and one harmonic with adjusted amplitude and phase shift. It was found that ratio and p…

Frequency responseElectric current measurementCurrent measurement current transducer frequency response hall effect devices harmonic distortion power system harmonics.AcousticsTransducersPhase (waves)GyratorsNon-sinusoidal excitationHarmonic distortionAccuracy levelFundamental frequenciesHarmonic analysisPhase errorElectric currentsError compensationFrequency responseFrequency response testsWaveformSinusoidal excitationsPhase shiftElectrical and Electronic EngineeringInstrumentationPhysicsTotal harmonic distortionElectric power distributionHall effectCurrent measurementsMetrological performanceCurrent transducerFundamental frequencyLight measurementAmplitudeAccuracy classHarmonicsMagnetic field effectsHarmonicHarmonic amplitudeSettore ING-INF/07 - Misure Elettriche E ElettronicheDistorted waveformsHarmonic componentsHall effect devicesIEEE Transactions on Instrumentation and Measurement
researchProduct

Optimal design of viscoelastic tuned mass dampers for structures exposed to coloured excitations

2022

Dynamic interaction between primary and secondary structures can alter the response of buildings, bridges and other civil engineering structures to external stressors such as earthquakes and windstorms. TMDs (tuned mass dampers) are a well-known example of passive control devices that exploit this concept. A TMD consists of a secondary mass attached to the primary structure through a linear or nonlinear link. Various formulations exist to optimize the performance of TMDs, depending on the chosen criterion. Typically, the TMD is optimized considering the steady-state amplitude of motion of the primary structure, e.g., when subjected to monochromatic harmonic excitation (H∞ criterion) or whit…

H-2 optimizationcoloured excitationsKanai-Tajimi filterTuned mass damper
researchProduct

A [Cr2Ni] coordination polymer: slow relaxation of magnetization in quasi-one-dimensional ferromagnetic chains

2018

The reaction of [Cr3IIIO(OAc)6(H2O)3]NO3·AcOH with 2-hydroxynaphthaldehyde, 2-amino-isobutyric acid and NiCl2·6H2O in MeOH, under basic and solvothermal conditions, led to the formation of the quasi-1D coordination polymer {[CrIII2NiII(L)4(MeOH)2]}n (where L = the dianion of the Schiff base between 2-hydroxynaphthaldehyde and 2-amino-isobutyric acid), which behaves as a ferromagnetic chain, displaying slow relaxation of magnetization.

Materials scienceCoordination polymer010402 general chemistry01 natural sciencesCatalysisMETAL-ORGANIC FRAMEWORKSchemistry.chemical_compoundMagnetizationChain (algebraic topology)SYSTEMSNANO-MAGNETSABSORPTIONMaterials ChemistryFIELDANTIFERROMAGNETSANISOTROPYMOSSBAUER RELAXATIONSchiff base010405 organic chemistryNONLINEAR EXCITATIONSMetals and AlloysGeneral ChemistrySINGLE-MOLECULE MAGNETS0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsCrystallographychemistryFerromagnetismCeramics and CompositesRelaxation (physics)Quasi one dimensional
researchProduct

Electronic excitations in ZnWO4 and ZnxNi1−x WO4 (x = 0.1 − 0.9) using VUV synchrotron radiation

2011

The photoluminescence spectra and luminescence excitation spectra of pure microcrystalline and nano-sized ZnWO4 as well as the Zn x Ni1−x WO4 solid solutions were studied using vacuum ultraviolet (VUV) synchrotron radiation. The samples were also characterized by x-ray powder diffraction. We found that: (i) the shape of the photoluminescence band at 2.5 eV, being due to radiative electron transitions within the [WO6]6− anions, becomes modulated by the optical absorption of Ni2+ ions in the Zn x Ni1−x WO4 solid solutions; and (ii) no significant change in the excitation spectra of Zn0.9Ni0.1WO4 is observed compared to pure ZnWO4. At the same time, a shift of the excitonic bands to smaller en…

Materials sciencePhotoluminescenceQC1-999General Physics and AstronomySynchrotron radiation02 engineering and technology01 natural sciencesSpectral lineCondensed Matter::Materials Scienceznxni1−x wo4 solid solutions0103 physical sciencesluminescencePhotoluminescence excitationelectronic excitations010302 applied physicsPhysicsznwo4021001 nanoscience & nanotechnologyAtomic electron transitionvuv spectroscopyAtomic physics0210 nano-technologyLuminescenceExcitationPowder diffractiontungstatesOpen Physics
researchProduct

Probing Surface Quantum Flows in Deformed Pygmy Dipole Modes

2017

In order to explore the nature of collective modes in weakly bound nuclei, we have investigated deformation effects and surface flow patterns of isovector dipole modes in a shape-coexisting nucleus $^{40}$Mg. The calculations were done in a fully self-consistent continuum finite-amplitude Quasiparticle Random Phase Approximation (QRPA) in a large deformed spatial mesh. An unexpected result of pygmy and giant dipole modes having disproportionate deformation splittings in strength functions was obtained. Furthermore, the transition current densities demonstrate that the long-sought core-halo oscillation in pygmy resonances is collective and compressional, corresponding to the lowest excitatio…

NEUTRON DRIP-LINENuclear TheoryFOS: Physical sciencesresonance reactions114 Physical sciences01 natural sciencesMolecular physicsNuclear Theory (nucl-th)nuclear charge distribution0103 physical sciencescollective levelsNuclear drip line010306 general physicsQuantumEXCITATIONSPhysicsta114nuclear density functional theoryNUCLEICondensed matter physicsIsovector010308 nuclear & particles physicsOscillationDipoleQuasiparticleRandom phase approximationExcitation
researchProduct