6533b82efe1ef96bd129331e
RESEARCH PRODUCT
Electronic excitations in ZnWO4 and ZnxNi1−x WO4 (x = 0.1 − 0.9) using VUV synchrotron radiation
Anatoli I. PopovVladimir PankratovAlexei KuzminAleksandr KalinkoL. ShirmaneAlexey Kotlovsubject
Materials sciencePhotoluminescenceQC1-999General Physics and AstronomySynchrotron radiation02 engineering and technology01 natural sciencesSpectral lineCondensed Matter::Materials Scienceznxni1−x wo4 solid solutions0103 physical sciencesluminescencePhotoluminescence excitationelectronic excitations010302 applied physicsPhysicsznwo4021001 nanoscience & nanotechnologyAtomic electron transitionvuv spectroscopyAtomic physics0210 nano-technologyLuminescenceExcitationPowder diffractiontungstatesdescription
The photoluminescence spectra and luminescence excitation spectra of pure microcrystalline and nano-sized ZnWO4 as well as the Zn x Ni1−x WO4 solid solutions were studied using vacuum ultraviolet (VUV) synchrotron radiation. The samples were also characterized by x-ray powder diffraction. We found that: (i) the shape of the photoluminescence band at 2.5 eV, being due to radiative electron transitions within the [WO6]6− anions, becomes modulated by the optical absorption of Ni2+ ions in the Zn x Ni1−x WO4 solid solutions; and (ii) no significant change in the excitation spectra of Zn0.9Ni0.1WO4 is observed compared to pure ZnWO4. At the same time, a shift of the excitonic bands to smaller energies and a set of peaks, attributed to the one-electron transitions from the top of the valence band to quasi-localized states, were observed in the excitation spectrum of nano-sized ZnWO4.
year | journal | country | edition | language |
---|---|---|---|---|
2011-04-01 | Open Physics |