Search results for "Experimental technique"
showing 10 items of 227 documents
Tracking with heavily irradiated silicon detectors operated at cryogenic temperatures
1998
In this work we show that a heavily irradiated double-sided silicon microstrip detector recovers its performance when operated at cryogenic temperatures. A DELPHI microstrip detector, irradiated to a fluence of /spl sim/4/spl times/10/sup 14/ p/cm/sup 2/, no longer operational at room temperature, cannot be distinguished from a non-irradiated one when operated at T<120 K. Besides confirming the previously observed 'Lazarus effect' in single diodes, these results establish, for the first time, the possibility of using standard silicon detectors for tracking applications in extremely demanding radiation environments.
Collisional ionization as a sensitive detection scheme in collinear laser-fast-beam spectroscopy
1986
Abstract State-selective collisional ionization of fast atomic beams is used to detect optical pumping. Counting of these ions is superior in sensitivity by several orders of magnitude to the conventional fluorescence detection, provided that the energy levels involved in the optical pumping process are sufficiently well separated. A straightforward application is envisaged in the collinear laser-fast-beam spectroscopy of rare-gas isotopes far from stability of which only very weak beams are available from on-line isotope separators.
Performance of the ATLAS detector using first collision data
2010
More than half a million minimum-bias events of LHC collision data were collected by the ATLAS experiment in December 2009 at centre-of-mass energies of 0.9 TeV and 2.36 TeV. This paper reports on studies of the initial performance of the ATLAS detector from these data. Comparisons between data and Monte Carlo predictions are shown for distributions of several track- and calorimeter-based quantities. The good performance of the ATLAS detector in these first data gives confidence for successful running at higher energies.
Search for dark matter candidates and large extra dimensions in events with a jet and missing transverse momentum with the ATLAS detector
2013
A search for new phenomena in events with a high-energy jet and large missing transverse momentum is performed using data from proton-proton collisions at √s = 7 TeV with the ATLAS experiment at the Large Hadron Collider. Four kinematic regions are explored using a dataset corresponding to an integrated luminosity of 4.7 fb[superscript −1]. No excess of events beyond expectations from Standard Model processes is observed, and limits are set on large extra dimensions and the pair production of dark matter particles.
Implementation and performance of the third level muon trigger of the ATLAS experiment at LHC
2006
The trigger system of the ATLAS experiment at the LHC aims at a high selectivity in order to keep the full physics potential while reducing the 40 MHz initial event rate imposed by the LHC bunch crossing down to /spl sim/100 Hz, as required by the data acquisition system. Algorithms working in the final stage of the trigger environment (Event Filter) are implemented to run both in a "wrapped" mode (reconstructing tracks in the entire Muon Spectrometer) and in a "seeded" mode (according to a dedicated strategy that performs pattern recognition only in regions of the detector where trigger hypotheses have been produced at earlier stages). The working principles of the offline muon reconstruct…
The MuPix System-on-Chip for the Mu3e Experiment
2016
Nuclear instruments & methods in physics research / A 845, 194 - 198 (2016). doi:10.1016/j.nima.2016.06.095
Hadronic Shower Development in Iron-Scintillator Tile Calorimetry
2000
The lateral and longitudinal profiles of hadronic showers detected by a prototype of the ATLAS Iron-Scintillator Tile Hadron Calorimeter have been investigated. This calorimeter uses a unique longitudinal configuration of scintillator tiles. Using a fine-grained pion beam scan at 100 GeV, a detailed picture of transverse shower behavior is obtained. The underlying radial energy densities for four depth segments and for the entire calorimeter have been reconstructed. A three-dimensional hadronic shower parametrization has been developed. The results presented here are useful for understanding the performance of iron-scintillator calorimeters, for developing fast simulations of hadronic showe…
Performance of the DELPHI detector
1996
DELPHI (DEtector with Lepton, Photon and Hadron Identification) is a detector for e(+)e(-) physics, designed to provide high granularity over a 4 pi solid angle, allowing an effective particle identification, It has been operating at the LEP (Large Electron-Positron) collider at CERN since 1989. This article reviews its performance.
Hadron energy reconstruction for the ATLAS calorimetry in the framework of the non-parametrical method
2002
This paper discusses hadron energy reconstruction for the ATLAS barrel prototype combined calorimeter (consisting of a lead-liquid argon electromagnetic part and an iron-scintillator hadronic part) in the framework of the non-parametrical method. The non-parametrical method utilizes only the known $e/h$ ratios and the electron calibration constants and does not require the determination of any parameters by a minimization technique. Thus, this technique lends itself to an easy use in a first level trigger. The reconstructed mean values of the hadron energies are within $\pm 1%$ of the true values and the fractional energy resolution is $[(58\pm3)% /\sqrt{E}+(2.5\pm0.3)%]\oplus (1.7\pm0.2)/E…
Overview of the high-level trigger electron and photon selection for the ATLAS experiment at the LHC
2005
texte intégral : http://cdsweb.cern.ch/record/846438; The ATLAS experiment at the Large Hadron Collider (LHC) will face the challenge of efficiently selecting interesting candidate events in$pp$collisions at 14 TeV center-of-mass energy, whilst rejecting the enormous number of background events. The High-Level Trigger (HLT$=$second level trigger and Event Filter), which is a software based trigger will need to reduce the level-1 output rate of$approx75$kHz to$approx200$Hz written out to mass storage. In this talk an overview of the current physics and system performance of the HLT selection for electrons and photons is given. The performance has been evaluated using Monte Carlo simulations …