Search results for "Extra-galactic"

showing 10 items of 83 documents

Effects of spin-orbit interaction on nuclear response and neutrino mean free path

2006

PTH; The effects of the spin-orbit component of the particle-hole interaction on nuclear response functions and neutrino mean free path are examined. A complete treatment of the full Skyrme interaction in the case of symmetric nuclear matter and pure neutron matter is given. Numerical results for neutron matter are discussed. It is shown that the effects of the spin-orbit interaction remain small, even at momentum transfer larger than the Fermi momentum. The neutrino mean free paths are marginally affected.

Nuclear and High Energy PhysicsParticle physicsresponse functionsNuclear Theory[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]Mean free pathAstrophysics::High Energy Astrophysical PhenomenaNuclear TheoryFOS: Physical sciencesAstrophysics01 natural sciences21.30.Fe 21.60.Jz 21.65.+f 26.60.+cNuclear Theory (nucl-th)Nuclear physicsMomentum[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]0103 physical sciencesNeutronspin-orbit interaction010306 general physicsPhysics[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]010308 nuclear & particles physicsAstrophysics (astro-ph)Momentum transferFísicaSpin–orbit interactionNuclear matterNeutron starnuclear matterrandom phase approximationeffective Skyrme interactionsNeutrino
researchProduct

The ANTARES Optical Beacon System

2007

ANTARES is a neutrino telescope being deployed in the Mediterranean Sea. It consists of a three dimensional array of photomultiplier tubes that can detect the Cherenkov light induced by charged particles produced in the interactions of neutrinos with the surrounding medium. High angular resolution can be achieved, in particular when a muon is produced, provided that the Cherenkov photons are detected with sufficient timing precision. Considerations of the intrinsic time uncertainties stemming from the transit time spread in the photomultiplier tubes and the mechanism of transmission of light in sea water lead to the conclusion that a relative time accuracy of the order of 0.5 ns is desirabl…

Nuclear and High Energy PhysicsPhotomultiplierPhysics::Instrumentation and Detectors[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesneutrino telescope; optical beacon; time calibrationAstrophysics01 natural scienceslaw.inventionTelescope[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Opticslaw0103 physical sciencesCalibrationtime calibrationAngular resolution14. Life underwateroptical beacon010306 general physicsInstrumentationCherenkov radiationPhysics[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]neutrino telescope time calibration optical beacon010308 nuclear & particles physicsbusiness.industryDetectorAstrophysics (astro-ph)Astrophysics::Instrumentation and Methods for Astrophysicsneutrino telescopeSITEAstronomyBeaconLIGHTFísica nuclearNeutrinobusiness
researchProduct

Calibration and Characterization of the IceCube Photomultiplier Tube

2010

Over 5,000 PMTs are being deployed at the South Pole to compose the IceCube neutrino observatory. Many are placed deep in the ice to detect Cherenkov light emitted by the products of high-energy neutrino interactions, and others are frozen into tanks on the surface to detect particles from atmospheric cosmic ray showers. IceCube is using the 10-inch diameter R7081-02 made by Hamamatsu Photonics. This paper describes the laboratory characterization and calibration of these PMTs before deployment. PMTs were illuminated with pulses ranging from single photons to saturation level. Parameterizations are given for the single photoelectron charge spectrum and the saturation behavior. Time resoluti…

Nuclear and High Energy PhysicsPhotomultiplier[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]PhotonPhysics::Instrumentation and Detectors[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayContext (language use)AstrophysicsAetiology screening and detection [ONCOL 5]01 natural sciencesIceCube Neutrino Observatory[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Optics0103 physical sciencesNeutrinoCherenkovddc:530Instrumentation and Methods for Astrophysics (astro-ph.IM)010303 astronomy & astrophysicsInstrumentationCosmic raysCherenkov radiationPhysicsCherenkov; Cosmic rays; Ice; Neutrino; PMT010308 nuclear & particles physicsbusiness.industry[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]IceAstrophysics::Instrumentation and Methods for AstrophysicsPMTNeutrinoPhotonicsAstrophysics - Instrumentation and Methods for Astrophysicsbusiness
researchProduct

Dark photon dark matter in the presence of inhomogeneous structure

2020

Dark photon dark matter will resonantly convert into visible photons when the dark photon mass is equal to the plasma frequency of the ambient medium. In cosmological contexts, this transition leads to an extremely efficient, albeit short-lived, heating of the surrounding gas. Existing work in this field has been predominantly focused on understanding the implications of these resonant transitions in the limit that the plasma frequency of the Universe can be treated as being perfectly homogeneous, i.e. neglecting inhomogeneities in the electron number density. In this work we focus on the implications of heating from dark photon dark matter in the presence of inhomogeneous structure (which …

Nuclear and High Energy PhysicsPhotonCosmology and Nongalactic Astrophysics (astro-ph.CO)Dark matterFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsPlasma oscillation01 natural sciencesDark photon[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]High Energy Physics - Phenomenology (hep-ph)0103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. RadioactivityThermal Field Theory010306 general physicsReionizationPhysicsRange (particle radiation)010308 nuclear & particles physicsStar formationFísicaCosmology of Theories beyond the SMHigh Energy Physics - PhenomenologyOrders of magnitude (time)[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]lcsh:QC770-798Astrophysics - Cosmology and Nongalactic AstrophysicsJournal of High Energy Physics
researchProduct

Extensive air showers and diffused Cherenkov light detection: The ULTRA experiment

2007

Abstract The Uv Light Transmission and Reflection in the Atmosphere (ULTRA) experiment has been designed to provide quantitative measurements of the backscattered Cherenkov signal associated to the Extensive Air Showers (EAS) at the impact point on the Earth surface. The knowledge of such information will test the possibility to detect the diffused Cherenkov light spot from space within the Ultra high-energy cosmic ray observation. The Cherenkov signal is necessary to give an absolute reference for the track, allowing the measurement of the shower maximum and easing the separation between neutrino and hadronic showers. In this paper we discuss the experimental set-up with detailed informati…

Nuclear and High Energy PhysicsPhysics::Instrumentation and DetectorsCherenkov detectorAstrophysics::High Energy Astrophysical PhenomenaCosmic ray01 natural sciencesSignalParticle detectorlaw.invention[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Cosmic ray detectorsOpticsultra high energy cosmic rays cerenkov radiation international space stationlaw0103 physical sciencesExtensive air showers[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Cosmic rays010303 astronomy & astrophysicsInstrumentationCherenkov radiationPhysics[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]010308 nuclear & particles physicsbusiness.industryCherenkov radiationDetectorAstrophysics::Instrumentation and Methods for Astrophysics96.40.Pq; 98.70.Sa; 95.55.Vj; 29.40.KaAstronomyAir shower13. Climate actionHigh Energy Physics::ExperimentNeutrinobusinessNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

First search for extremely high energy cosmogenic neutrinos with the IceCube Neutrino Observatory.

2010

We report on the results of the search for extremely-high energy (EHE) neutrinos with energies above $10^7$ GeV obtained with the partially ($\sim$30%) constructed IceCube in 2007. From the absence of signal events in the sample of 242.1 days of effective livetime, we derive a 90% C.L. model independent differential upper limit based on the number of signal events per energy decade at $E^2 \phi_{\nu_e+\nu_\mu+\nu_\tau}\simeq 1.4 \times 10^{-6}$ GeV cm$^{-2}$ sec$^{-1}$ sr$^{-1}$ for neutrinos in the energy range from $3\times10^7$ to $3\times10^9$ GeV.

Nuclear and High Energy Physics[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Cosmology and Nongalactic Astrophysics (astro-ph.CO)[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayElementary particleAstrophysicsAetiology screening and detection [ONCOL 5]01 natural sciencesIceCube Neutrino Observatory[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]cosmic raysSpectrummuon0103 physical sciencesNeutrinoddc:530010306 general physicsGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Muon010308 nuclear & particles physics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]High Energy Physics::Phenomenologypionand other elementary particlesCosmic-RaysMassless particleNeutrino detectorHigh Energy Physics::ExperimentNeutrinoAstrophysics - High Energy Astrophysical PhenomenaLeptonAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Response of the XENON100 dark matter detector to nuclear recoils

2013

Results from the nuclear recoil calibration of the XENON100 dark matter detector installed underground at the Laboratori Nazionali del Gran Sasso (LNGS), Italy are presented. Data from measurements with an external 241AmBe neutron source are compared with a detailed Monte Carlo simulation which is used to extract the energy dependent charge-yield Qy and relative scintillation efficiency Leff. A very good level of absolute spectral matching is achieved in both observable signal channels - scintillation S1 and ionization S2 - along with agreement in the 2-dimensional particle discrimination space. The results confirm the validity of the derived signal acceptance in earlier reported dark matte…

Nuclear and High Energy Physics[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Cosmology and Nongalactic Astrophysics (astro-ph.CO)[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Physics::Instrumentation and DetectorsMonte Carlo methodDark matterFOS: Physical sciences01 natural sciencesdark matterParticle detectorNuclear physics[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]RecoilIonization0103 physical sciences010306 general physicsNuclear ExperimentInstrumentation and Methods for Astrophysics (astro-ph.IM)PhysicsScintillation010308 nuclear & particles physicsDetectorAstrophysics::Instrumentation and Methods for Astrophysics[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Neutron sourceAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

The data acquisition system for the ANTARES neutrino telescope

2006

The ANTARES neutrino telescope is being constructed in the Mediterranean Sea. It consists of a large three-dimensional array of photo-multiplier tubes. The data acquisition system of the detector takes care of the digitisation of the photo-multiplier tube signals, data transport, data filtering, and data storage. The detector is operated using a control program interfaced with all elements. The design and the implementation of the data acquisition system are described.

Nuclear and High Energy Physics[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Physics::Instrumentation and DetectorsData managementAstrophysics::High Energy Astrophysical PhenomenaNeutrino telescopeComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONFOS: Physical sciencesAstrophysics01 natural sciences[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Data filteringData acquisition0103 physical sciences14. Life underwaterElectronics010306 general physicsInstrumentationdata acquisition system; neutrino telescopeRemote sensingAstroparticle physicsPhysicsneutrino telescope data acquisition system[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]010308 nuclear & particles physicsbusiness.industryDetectorAstrophysics (astro-ph)Astrophysics::Instrumentation and Methods for AstrophysicsAstronomyneutrino telescopedata acquisition systemComputer data storageFísica nuclearbusiness
researchProduct

Time calibration of the ANTARES neutrino telescope

2011

The ANTARES deep-sea neutrino telescope comprises a three-dimensional array of photomultipliers to detect the Cherenkov light induced by upgoing relativistic charged particles originating from neutrino interactions in the vicinity of the detector. The large scattering length of light in the deep sea facilitates an angular resolution of a few tenths of a degree for neutrino energies exceeding 10 TeV. In order to achieve this optimal performance, the time calibration procedures should ensure a relative time calibration between the photomultipliers at the level of ~1 ns. The methods developed to attain this level of precision are described.

Optical telescopesPhysics - Instrumentation and Detectors[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Physics::Instrumentation and Detectors01 natural sciencesOptimal performanceHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)Calibration procedureDimensional arraysAngular resolution[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Neutrino energyNEUTRINO TELESCOPE010303 astronomy & astrophysicsPhysicsDetectorAstrophysics::Instrumentation and Methods for AstrophysicsInstrumentation and Detectors (physics.ins-det)Deep seaNeutrino detectorRelative timeCalibrationFísica nuclearNeutrinoAstrophysics - Instrumentation and Methods for AstrophysicsTime calibrationPhotomultiplier[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Cherenkov lightAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesScattering lengthNeutrino TelescopesOptical telescopeNuclear physics[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Tellurium compounds0103 physical sciencesOptical systemsCalibrationAngular resolution14. Life underwater[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Instrumentation and Methods for Astrophysics (astro-ph.IM)DETECTORCherenkov radiationtime calibration; neutrino telescopes; antaresANTARES010308 nuclear & particles physicsNeutrino interactionsAstronomyElementary particlesAstronomy and AstrophysicsPhotomultipliersFISICA APLICADAHigh Energy Physics::ExperimentUNDERWATER DETECTORNeutrino telescopesSYSTEM
researchProduct

The energy spectrum of atmospheric neutrinos between 2 and 200 TeV with the AMANDA-II detector

2010

The muon and anti-muon neutrino energy spectrum is determined from 2000-2003 AMANDA telescope data using regularised unfolding. This is the first measurement of atmospheric neutrinos in the energy range 2 - 200 TeV. The result is compared to different atmospheric neutrino models and it is compatible with the atmospheric neutrinos from pion and kaon decays. No significant contribution from charm hadron decays or extraterrestrial neutrinos is detected. The capabilities to improve the measurement of the neutrino spectrum with the successor experiment IceCube are discussed.

Particle physicsAMANDA[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Physics::Instrumentation and Detectors[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Solar neutrinoAstrophysics::High Energy Astrophysical PhenomenaAMANDA; Atmospheric neutrinos; Cherenkov radiation; Neural net; Unfoldingneural netFOS: Physical sciencesAetiology screening and detection [ONCOL 5]01 natural sciences7. Clean energy[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]0103 physical sciences010306 general physicsunfoldingPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Muon010308 nuclear & particles physics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Cherenkov radiationHigh Energy Physics::PhenomenologyAstronomy and AstrophysicsSolar neutrino problematmospheric neutrinosCosmic neutrino backgroundNeutrino detectorddc:540Measurements of neutrino speedHigh Energy Physics::ExperimentAstrophysics::Earth and Planetary AstrophysicsNeutrino astronomyNeutrinoAstrophysics - High Energy Astrophysical Phenomena
researchProduct