Search results for "Extra-galactic"

showing 10 items of 83 documents

Nuclear liquid-gas phase transition and supernovae evolution

2004

It is shown that the large density fluctuations appearing at the onset of the first order nuclear liquid-gas phase transition can play an important role in the supernovae evolution. Due to these fluctuations, the neutrino gas may be trapped inside a thin layer of matter near the proto-neutron star surface. The resulting increase of pressure may induce strong particle ejection a few hundred milliseconds after the bounce of the collapse, contributing to the revival of the shock wave. The Hartree-Fock+RPA scheme, with a finite-range nucleon-nucleon effective interaction, is employed to estimate the effects of the neutrino trapping due to the strong density fluctuations, and to discuss qualitat…

Shock waveNuclear and High Energy PhysicsPhase transition97.60.Bw; 26.50.+x; 25.30.Pt; 21.60.JzNuclear Theory[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]supernovaeAstrophysics::High Energy Astrophysical PhenomenaNuclear TheoryFOS: Physical sciencesTrappingAstrophysics7. Clean energy01 natural sciencesNuclear Theory (nucl-th)Nuclear physics[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]0103 physical sciences010306 general physicsPhysics[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]010308 nuclear & particles physicsLiquid gasAstrophysics (astro-ph)FísicaneutrinosNuclear matterSupernovaphase transitionnuclear matterParticleNeutrino
researchProduct

INTEGRAL/SPI ground calibration

2003

Three calibration campaigns of the spectrometer SPI have been performed before launch in order to determine the instrument characteristics, such as the effective detection area, the spectral resolution and the angular resolution. Absolute determination of the effective area has been obtained from simulations and measurements. At 1 MeV, the effective area is 65 cm^2 for a point source on the optical axis, the spectral resolution ~2.3 keV. The angular resolution is better than 2.5 deg and the source separation capability about 1 deg. Some temperature dependant parameters will require permanent in-flight calibration.

Point source[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]FOS: Physical sciencesInstrumentation ; Detectors ; Spectrographs ; Space vehicles ; Gamma rays ; ObservationsAstrophysicsUNESCO::ASTRONOMÍA Y ASTROFÍSICAAstrophysics01 natural sciences[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]OpticsSpectrographs0103 physical sciencesCalibrationSource separationAngular resolutionSpectral resolutionspace vehicles: instrumentsInstrumentation010303 astronomy & astrophysicsObservations:ASTRONOMÍA Y ASTROFÍSICA::Astronomía óptica [UNESCO]instrumentation: spectrographsPhysicsSpectrometer[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]010308 nuclear & particles physicsbusiness.industryinstrumentation: detectorsUNESCO::ASTRONOMÍA Y ASTROFÍSICA::Astronomía ópticaGamma raysAntenna apertureAstrophysics (astro-ph)DetectorsSpace vehiclesAstronomy and AstrophysicsOptical axisSpace and Planetary Sciencebusiness:ASTRONOMÍA Y ASTROFÍSICA [UNESCO]gamma rays: observations
researchProduct

ERRATUM: "Search for High-Energy Muon Neutrinos from the "Naked-Eye" GRB 080319B with the Icecube Neutrino Telescope" (2009, ApJ, 701, 1721)

2009

We have noticed some mistakes in formulae (A2) and (A5) in the appendix of our paper. The errors are not present in the code used in the analysis and hence none of the plots or results is affected. The correct formulae are below.

Physics[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Muon[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Solar neutrino[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]AstronomyAstronomyAstronomy and AstrophysicsAstrophysicsSolar neutrino problem01 natural sciences[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Neutrino detectorSpace and Planetary Science0103 physical sciencesNaked eyeNeutrinoNeutrino astronomy010306 general physicsGamma-ray burstGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)
researchProduct

Status of the EDELWEISS experiment

1999

The Edelweiss Dark Matter Experiment is installed in the Modane Underground Laboratory since 1994. In 1997 the first detector of a 70 g heat and ionization Ge low-temperature detector built by the collaboration showed its discrimination capabilities. During the last two years the installation was upgraded, and a new generation of 70 g Ge detectors is operational. The detector environment is drastically controlled to avoid radioactive contamination. A test run with two new 70 g detectors shows a reduction by a factor of ten in the background level before 7-ray rejection which is now around 2 events/kg/keV/day. Three 320 g Ge cryogenic detectors have been constructed and are now being tested …

CryostatPhysicsNuclear and High Energy Physics[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]Dark matterBolometerDetectorCosmic rayEDELWEISSAtomic and Molecular Physics and OpticsParticle detectorlaw.invention[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Nuclear physicsWIMPlaw[SDU]Sciences of the Universe [physics]Measuring instrumentInstrumentationEvent (probability theory)
researchProduct

Probing neutrino masses with CMB lensing extraction

2005

We evaluate the ability of future cosmic microwave background (CMB) experiments to measure the power spectrum of large scale structure using quadratic estimators of the weak lensing deflection field. We calculate the sensitivity of upcoming CMB experiments such as BICEP, QUaD, BRAIN, ClOVER and PLANCK to the non-zero total neutrino mass M_nu indicated by current neutrino oscillation data. We find that these experiments greatly benefit from lensing extraction techniques, improving their one-sigma sensitivity to M_nu by a factor of order four. The combination of data from PLANCK and the SAMPAN mini-satellite project would lead to sigma(M_nu) = 0.1 eV, while a value as small as sigma(M_nu) = 0…

Nuclear and High Energy PhysicsParticle physicsCosmic microwave backgroundDark matterFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics01 natural sciences[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]symbols.namesakeHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesPlanckNeutrino oscillation010303 astronomy & astrophysicsWeak gravitational lensingPhysics[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]010308 nuclear & particles physicsAstrophysics (astro-ph)Astrophysics::Instrumentation and Methods for AstrophysicsFísicaSpectral densityHigh Energy Physics - PhenomenologyDark energysymbolsNeutrino
researchProduct

A search for anisotropy in the arrival directions of ultra high energy cosmic rays recorded at the Pierre Auger Observatory

2012

Observations of cosmic ray arrival directions made with the Pierre Auger Observatory have previously provided evidence of anisotropy at the 99% CL using the correlation of ultra high energy cosmic rays (UHECRs) with objects drawn from the Véron-Cetty Véron catalog. In this paper we report on the use of three catalog independent methods to search for anisotropy. The 2pt–L, 2pt+ and 3pt methods, each giving a different measure of selfclustering in arrival directions, were tested on mock cosmic ray data sets to study the impacts of sample size and magnetic smearing on their results, accounting for both angular and energy resolutions. If the sources of UHECRs follow the same large scale structu…

HIRES STEREO[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]AstronomySMALL-SCALE ANISOTROPYAstrophysics01 natural sciencesAltas energíasCosmic Rays ShowerCosmologyUltra-high-energy cosmic rayAnisotropy010303 astronomy & astrophysicsmedia_commonPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)[PHYS]Physics [physics]BL-LACERTAEAstrophysics::Instrumentation and Methods for AstrophysicsPierre Auger ObservatoryRadiación cósmicaFísica nuclearOBJECTSAstrophysics - High Energy Astrophysical Phenomenacosmic ray experiments; ultra high energy cosmic raysACTIVE GALACTIC NUCLEIActive galactic nucleusmedia_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic raysearch for anisotropyultra high energy cosmic raysCosmic Ray[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]0103 physical sciences010306 general physicsCiencias ExactasPierre Auger ObservatorySPECTRUMAstronomyFísicaAstronomy and AstrophysicsASTROFÍSICAUniverseGalaxyExperimental High Energy Physicsanisotrpycosmic ray experiments[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]cosmologyJournal of Cosmology and Astroparticle Physics
researchProduct

Limits on a muon flux from Kaluza-Klein dark matter annihilations in the Sun from the IceCube 22-string detector

2010

A search for muon neutrinos from Kaluza-Klein dark matter annihilations in the Sun has been performed with the 22-string configuration of the IceCube neutrino detector using data collected in 104.3 days of live-time in 2007. No excess over the expected atmospheric background has been observed. Upper limits have been obtained on the annihilation rate of captured lightest Kaluza-Klein particle (LKP) WIMPs in the Sun and converted to limits on the LKP-proton cross-sections for LKP masses in the range 250 -- 3000 GeV. These results are the most stringent limits to date on LKP annihilation in the Sun.

[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Nuclear and High Energy PhysicsParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Physics::Instrumentation and DetectorsSolar neutrinoDark matterFOS: Physical sciencesAstrophysics01 natural sciences7. Clean energy[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]0103 physical sciencesDark matterddc:530010306 general physicsCosmic raysHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsAnnihilationMuon010308 nuclear & particles physics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Massless particleNeutrino detectorHigh Energy Physics::ExperimentOther gauge bosonsNeutrinoAstrophysics - High Energy Astrophysical PhenomenaAstrophysics - Cosmology and Nongalactic AstrophysicsLeptonPhysical Review D
researchProduct

Observation of the suppression of the flux of cosmic rays above 4x10^19eV

2008

The energy spectrum of cosmic rays above 2.5 × 10¹⁸ eV, derived from 20,000 events recorded at the Pierre Auger Observatory, is described. The spectral index γ of the particle flux, J ∝ E-γ, at energies between 4 × 10¹⁸ eV and 4 × 10¹⁹ eV is 2.69 ± 0.02(stat) ± 0.06(syst), steepening to 4.2 ± 0.4(stat) ± 0.06(syst) at higher energies. The hypothesis of a single power law is rejected with a significance greater than 6 standard deviations. The data are consistent with the prediction by Greisen and by Zatsepin and Kuz'min.

[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Astrophysics::High Energy Astrophysical Phenomenaenergy spectrumFOS: Physical sciencesGeneral Physics and AstronomyFluxOsservatorio Pierre Augerspectral indexCosmic rayparticle fluxAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsEXTENSIVE AIR-SHOWERSAstrophysicsUPPER LIMIT01 natural sciencesPower lawAugerNuclear physicsENERGY[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Raggi cosmicicosmic rays0103 physical sciencesddc:550Particle flux010303 astronomy & astrophysicsCiencias ExactasPhysicsPierre Auger ObservatorySpectral indexSPECTRUM[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]010308 nuclear & particles physicsAstrophysics (astro-ph)Settore FIS/01 - Fisica SperimentaleAstrophysics::Instrumentation and Methods for AstrophysicsFísicaEnergia ultra altaARRAYHigh Energy Physics::ExperimentSciami atmosferici estesiEnergy (signal processing)
researchProduct

Update on the correlation of the highest energy cosmic rays with nearby extragalactic matter

2010

Data collected by the Pierre Auger Observatory through 31 August 2007 showed evidence for anisotropy in the arrival directions of cosmic rays above the Greisen-Zatsepin-Kuz'min energy threshold, 6 x 10(19) eV. The anisotropy was measured by the fraction of arrival directions that are less than 3.1 degrees from the position of an active galactic nucleus within 75 Mpc (using the Veron-Cetty and Veron 12th catalog). An updated measurement of this fraction is reported here using the arrival directions of cosmic rays recorded above the same energy threshold through 31 December 2009. The number of arrival directions has increased from 27 to 69, allowing a more precise measurement. The correlating…

AstronomyAstrophysicsUltra High Energy Cosmic ray01 natural scienceslaw.inventionObservatorylawAnisotropy010303 astronomy & astrophysicsmedia_commonHigh Energy Astrophysical Phenomena (astro-ph.HE)Physics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]UHECRAstrophysics::Instrumentation and Methods for AstrophysicsPierre Auger ObservatoryGZKAnisotropíaGALAXIESNEUTRINOSGreisen–Zatsepin–Kuz’minComputingMethodologies_DOCUMENTANDTEXTPROCESSINGFísica nuclearAstrophysics - High Energy Astrophysical PhenomenaACTIVE GALACTIC NUCLEIHIPASS CATALOG[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Active galactic nucleusRadiación Cósmicamedia_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayAstrophysics::Cosmology and Extragalactic AstrophysicsTelescope0103 physical sciencesCosmic raysCiencias ExactasAstrophysics::Galaxy AstrophysicsPierre Auger ObservatorySPECTRUM010308 nuclear & particles physicsAstronomyFísicaAstronomy and AstrophysicsCosmic rayGalaxyCorrelation with astrophysical sourcesCosmic rays; UHECR; Anisotropy; Pierre Auger Observatory; Extra-galactic; GZKSkyExperimental High Energy PhysicsAnisotropyExtra-galactic
researchProduct

Background discrimination capabilities of a heat and ionization germanium cryogenic detector

2001

The discrimination capabilities of a 70 g heat and ionization Ge bolometer are studied. This first prototype has been used by the EDELWEISS Dark Matter experiment, installed in the Laboratoire Souterrain de Modane, for direct detection of WIMPs. Gamma and neutron calibrations demonstrate that this type of detector is able to reject more than 99.6% of the background while retaining 95% of the signal, provided that the background events distribution is not biased towards the surface of the Ge crystal. However, the 1.17 kg.day of data taken in a relatively important radioactive environment show an extra population slightly overlapping the signal. This background is likely due to interactions o…

Dark matterPopulationFOS: Physical sciencesAstrophysicsEDELWEISSAstrophysics01 natural scienceslaw.inventionNuclear physics[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]RecoillawIonization0103 physical sciencesNeutron010306 general physicseducationPhysicseducation.field_of_study[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]010308 nuclear & particles physicsBolometerDetectorAstrophysics (astro-ph)Astronomy and AstrophysicsDark matter ; WIMP ; cryogenic detector
researchProduct