Search results for "Física nuclear"

showing 10 items of 900 documents

Search for correlations between the arrival directions of IceCube neutrino events and ultrahigh-energy cosmic rays detected by the Pierre Auger Obser…

2016

This paper presents the results of different searches for correlations between very high-energy neutrino candidates detected by IceCube and the highest-energy cosmic rays measured by the Pierre Auger Observatory and the Telescope Array. We first consider samples of cascade neutrino events and of high-energy neutrino-induced muon tracks, which provided evidence for a neutrino flux of astrophysical origin, and study their cross-correlation with the ultrahigh-energy cosmic ray (UHECR) samples as a function of angular separation. We also study their possible directional correlations using a likelihood method stacking the neutrino arrival directions and adopting different assumptions on the size…

AstronomyAstrophysicsNeutrino experiments ultra high energy cosmic rays cosmic ray experiments neutrino astronomy.01 natural sciencesASTROPHYSICAL SOURCESultra high energy cosmic raylaw.inventionIceCubeAstronomi astrofysik och kosmologimagnetic [deflection]lawAstronomy Astrophysics and Cosmologycosmic ray experiments; neutrino astronomy; neutrino experiments; ultra high energy cosmic rays; Astronomy and Astrophysics010303 astronomy & astrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsAngular distanceAstrophysics::Instrumentation and Methods for AstrophysicsVHE [neutrino]GALACTIC MAGNETIC-FIELDcascadeAugerobservatorycosmic radiationCascadestackingcosmic ray experi- mentsComputingMethodologies_DOCUMENTANDTEXTPROCESSINGFísica nuclearNeutrinoAstrophysics - High Energy Astrophysical Phenomenaphysics[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Astrophysics::High Energy Astrophysical Phenomenacosmic ray experimentFOS: Physical sciencesCosmic rayultra high energy cosmic raysSURFACE DETECTORTelescopeneutrino astronomyneutrino experiments0103 physical sciencesddc:530Angular resolutionHigh Energy PhysicsPierre Auger ObservatorySPECTRUMMuon010308 nuclear & particles physicsAstronomy and Astrophysicsflux [neutrino]ASTROFÍSICAPhysics and Astronomyangular resolutioncorrelationExperimental High Energy Physicsneutrino experimenttracks [muon]cosmic ray experiments
researchProduct

Update on the correlation of the highest energy cosmic rays with nearby extragalactic matter

2010

Data collected by the Pierre Auger Observatory through 31 August 2007 showed evidence for anisotropy in the arrival directions of cosmic rays above the Greisen-Zatsepin-Kuz'min energy threshold, 6 x 10(19) eV. The anisotropy was measured by the fraction of arrival directions that are less than 3.1 degrees from the position of an active galactic nucleus within 75 Mpc (using the Veron-Cetty and Veron 12th catalog). An updated measurement of this fraction is reported here using the arrival directions of cosmic rays recorded above the same energy threshold through 31 December 2009. The number of arrival directions has increased from 27 to 69, allowing a more precise measurement. The correlating…

AstronomyAstrophysicsUltra High Energy Cosmic ray01 natural scienceslaw.inventionObservatorylawAnisotropy010303 astronomy & astrophysicsmedia_commonHigh Energy Astrophysical Phenomena (astro-ph.HE)Physics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]UHECRAstrophysics::Instrumentation and Methods for AstrophysicsPierre Auger ObservatoryGZKAnisotropíaGALAXIESNEUTRINOSGreisen–Zatsepin–Kuz’minComputingMethodologies_DOCUMENTANDTEXTPROCESSINGFísica nuclearAstrophysics - High Energy Astrophysical PhenomenaACTIVE GALACTIC NUCLEIHIPASS CATALOG[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Active galactic nucleusRadiación Cósmicamedia_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayAstrophysics::Cosmology and Extragalactic AstrophysicsTelescope0103 physical sciencesCosmic raysCiencias ExactasAstrophysics::Galaxy AstrophysicsPierre Auger ObservatorySPECTRUM010308 nuclear & particles physicsAstronomyFísicaAstronomy and AstrophysicsCosmic rayGalaxyCorrelation with astrophysical sourcesCosmic rays; UHECR; Anisotropy; Pierre Auger Observatory; Extra-galactic; GZKSkyExperimental High Energy PhysicsAnisotropyExtra-galactic
researchProduct

Description of atmospheric conditions at the Pierre Auger Observatory using the Global Data Assimilation System (GDAS)

2012

Atmospheric conditions at the site of a cosmic ray observatory must be known for reconstructing observed extensive air showers. The Global Data Assimilation System (GDAS) is a global atmospheric model predicated on meteorological measurements and numerical weather predictions. GDAS provides altitude-dependent profiles of the main state variables of the atmosphere like temperature, pressure, and humidity. The original data and their application to the air shower reconstruction of the Pierre Auger Observatory are described. By comparisons with radiosonde and weather station measurements obtained on-site in Malargüe and averaged monthly models, the utility of the GDAS data is shown.

AstronomyAtmospheric modelAtmospheric monitoringAtmospheric sciencesCosmic Rays Shower01 natural scienceslaw.inventionData assimilationlawcosmic rays; extensive air showers; atmospheric monitoring; atmospheric modelsDEPENDENCEATMOSFERA (OBSERVAÇÃO)TEMPERATUREPhysics::Atmospheric and Oceanic PhysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)[PHYS]Physics [physics]Cascada atmosférica extensaOPTICAL DEPTH[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Astrophysics::Instrumentation and Methods for AstrophysicsPierre Auger ObservatoryAtmospheric temperatureRadiación cósmicaAtmosphere of EarthComputingMethodologies_DOCUMENTANDTEXTPROCESSINGRadiosondeFísica nuclearREFRACTIVE-INDEXAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]MeteorologyAtmospheric MonitoringAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic Rays ShowersEXTENSIVE AIR-SHOWERSCosmic RayAtmósferaWeather stationAtmospheric models0103 physical sciencesExtensive air showers010306 general physicsCosmic raysDETECTORCiencias ExactasPierre Auger ObservatoryAtmospheric models010308 nuclear & particles physicsFísicaAstronomy and Astrophysics13. Climate actionExperimental High Energy PhysicsEMISSION[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Techniques for measuring aerosol attenuation using the Central Laser Facility at the Pierre Auger Observatory

2013

The Pierre Auger Observatory in Malargue, Argentina, is designed to study the properties of ultra-high energy cosmic rays with energies above 10(18) eV. It is a hybrid facility that employs a Fluorescence Detector to perform nearly calorimetric measurements of Extensive Air Shower energies. To obtain reliable calorimetric information from the FD, the atmospheric conditions at the observatory need to be continuously monitored during data acquisition. In particular, light attenuation due to aerosols is an important atmospheric correction. The aerosol concentration is highly variable, so that the aerosol attenuation needs to be evaluated hourly. We use light from the Central Laser Facility, lo…

AstronomyDetector alignment and calibration methods (lasers sources particle-beams)01 natural sciencesDetector alignment and calibration methods (laserObservatoryATMOSPHERIC CONDITIONSDetector alignment and calibration methodsInstrumentationcosmic rayMathematical PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicsatmospheric monitoring[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]PhysicsData analysiparticle-beams)ComputingMethodologies_DOCUMENTANDTEXTPROCESSINGCentral Laser FacilityFísica nuclearAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical Phenomenasources[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE][PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]sourceAuger Experimentaerosols * Authors are listed on the following pagesData analysisFOS: Physical sciencesCosmic rayAuger Experiment; cosmic rays; atmospheric monitoring; aerosolsOpticscosmic raysUltra-high energy cosmic rays. atmospheric monitoring. aerosols0103 physical sciences010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)Pierre Auger Observatory010308 nuclear & particles physicsbusiness.industryLarge detector systems for particle and astroparticle physicsAttenuationAtmospheric correctionUltra-high energy cosmic rays[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]AerosolDetector alignment and calibration methods (lasersAir showerdetector alignment and calibration methods (lasers; sources; particle-beams); large detector systems for particle and astroparticle physics; data analysisExperimental High Energy PhysicsLarge detector systems for particle and astroparticle physicbusinessRAIOS CÓSMICOSaerosolsSYSTEM
researchProduct

A search for point sources of EeV neutrons

2012

A thorough search of the sky exposed at the Pierre Auger Cosmic Ray Observatory reveals no statistically significant excess of events in any small solid angle that would be indicative of a flux of neutral particles from a discrete source. The search covers from −90◦ to +15◦ in declination using four different energy ranges above 1 EeV (1018 eV). The method used in this search is more sensitive to neutrons than to photons. The upper limit on a neutron flux is derived for a dense grid of directions for each of the four energy ranges. These results constrain scenarios for the production of ultrahigh energy cosmic rays in the Galaxy.

AstronomyEnergy fluxAstrophysics01 natural sciences7. Clean energyNeutron fluxObservatorycosmic rays – Galaxy: disk – methods: data analysisNeutron detection010303 astronomy & astrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Physics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Gamma rayAstrophysics::Instrumentation and Methods for AstrophysicsASTRONOMYPierre Auger ObservatoryCOSMIC-RAYSRadiación cósmicaUltra High Energy Cosmic RayComputingMethodologies_DOCUMENTANDTEXTPROCESSINGMASSIVE BLACK-HOLEFísica nuclearPierre Auger Observatory high-energy neutron sources neutron flux limitAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayGalaxiaGalaxy: diskcosmic rays0103 physical scienceshigh-energy neutron sourcesNeutronCosmic-ray observatoryCiencias ExactasANISOTROPY010308 nuclear & particles physicsGAMMA-RAYSAnálisis de datosAstronomyFísicaAstronomy and AstrophysicsASTROFÍSICAneutron flux limitmethods: data analysisNÊUTRONSSpace and Planetary ScienceUltra High Energy Cosmic RaysExperimental High Energy Physics[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]GALACTIC-CENTER
researchProduct

Does the Sun Shine byppor CNO Fusion Reactions?

2002

We show that solar neutrino experiments set an upper limit of 7.8% (7.3% including the recent KamLAND measurements) to the fraction of energy that the Sun produces via the CNO fusion cycle, which is an order of magnitude improvement upon the previous limit. New experiments are required to detect CNO neutrinos corresponding to the 1.5% of the solar luminosity that the standard solar model predicts is generated by the CNO cycle.

Astrophysics and AstronomyAstrofísica nuclearCNO cycleNuclear TheoryPhysics::Instrumentation and DetectorsSolar neutrinoSolar luminosityFOS: Physical sciencesGeneral Physics and AstronomyAstrophysicsAstrophysics7. Clean energy01 natural sciencesHigh Energy Physics - ExperimentNuclear Theory (nucl-th)High Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsNuclear fusionNuclear Experiment (nucl-ex)010306 general physicsNeutrino oscillationNuclear ExperimentAstrophysics::Galaxy AstrophysicsPhysicsStandard solar modelReaccions nuclears010308 nuclear & particles physicsAstrophysics (astro-ph)FísicaHigh Energy Physics - PhenomenologyPhysics::Space PhysicsNuclear astrophysicsHigh Energy Physics::ExperimentNuclear reactionsNeutrinoOrder of magnitudePhysical Review Letters
researchProduct

Cosmological lepton asymmetry with a nonzero mixing angle \theta13

2012

While the baryon asymmetry of the Universe is nowadays well measured by cosmological observations, the bounds on the lepton asymmetry in the form of neutrinos are still significantly weaker. We place limits on the relic neutrino asymmetries using some of the latest cosmological data, taking into account the effect of flavor oscillations. We present our results for two different values of the neutrino mixing angle \theta_{13}, and show that for large \theta_{13} the limits on the total neutrino asymmetry become more stringent, diluting even large initial flavor asymmetries. In particular, we find that the present bounds are still dominated by the limits coming from Big Bang Nucleosynthesis, …

Astrophysics and AstronomyNuclear and High Energy PhysicsParticle physicsmedia_common.quotation_subjectCosmic microwave backgroundCosmic background radiationAstrophysics::Cosmology and Extragalactic AstrophysicsEarly Universe7. Clean energy01 natural sciencesAsymmetryPartícules (Física nuclear)CosmologyBaryon asymmetryBig Bang nucleosynthesisPower Spectrum0103 physical sciences010306 general physicsTelescopemedia_commonPhysicsFlavor Oscillations010308 nuclear & particles physicsHigh Energy Physics::Phenomenology[PHYS.HPHE] Physics [physics]/High Energy Physics - Phenomenology [hep-ph]High Energy Physics - Phenomenology[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]ConstraintsParametersNeutrino DegeneracyHigh Energy Physics::ExperimentNeutrinoAstrophysics - Cosmology and Nongalactic AstrophysicsLepton
researchProduct

Search for the Standard Model Higgs Boson in the Diphoton Decay Channel with 4.9  fb−1 of pp Collision Data at s√=7  TeV with ATLAS

2012

A search for the standard model Higgs boson is performed in the diphoton decay channel. The data used correspond to an integrated luminosity of 4.9 fb(-1) collected with the ATLAS detector at the Large Hadron Collider in proton-proton collisions at a center-of-mass energy of root s = 7 TeV. In the diphoton mass range 110-150 GeV, the largest excess with respect to the background-only hypothesis is observed at 126.5 GeV, with a local significance of 2.8 standard deviations. Taking the look-elsewhere effect into account in the range 110-150 GeV, this significance becomes 1.5 standard deviations. The standard model Higgs boson is excluded at 95% confidence level in the mass ranges of 113-115 G…

Astrophysics::High Energy Astrophysical PhenomenaAcceleradors de partículesCol·lisions (Física nuclear)High Energy Physics::ExperimentNuclear ExperimentPartícules (Física nuclear)
researchProduct

Combined search for the Standard Model Higgs boson using up to 4.9 fb-1 of pp collision data at √(s)=7 TeV with the ATLAS detector at the LHC

2012

A combined search for the Standard Model Higgs boson with the ATLAS experiment at the LHC using datasets corresponding to integrated luminosities from 1.04 fb(-1) to 4.9 fb(-1) of pp collisions collected at root s = 7 TeV is presented. The Higgs boson mass ranges 112.9-115.5 GeV, 131-238 GeV and 251-466 GeV are excluded at the 95% confidence level (CL), while the range 124-519 GeV is expected to be excluded in the absence of a signal. An excess of events is observed around m(H) similar to 126 GeV with a local significance of 3.5 standard deviations (sigma). The local significances of H -> gamma, H -> ZZ(()*()) -> l(+)l(-)l'(+)l'(-) and H -> WW(*()) l(+)nu l'(-)(nu) over bar, the three most …

Astrophysics::High Energy Astrophysical PhenomenaAcceleradors de partículesCol·lisions (Física nuclear)High Energy Physics::ExperimentPartícules (Física nuclear)Detectors de radiació
researchProduct

Combined search for the Standard Model Higgs boson in pp collisions at root s=7 TeV with the ATLAS detector

2012

A combined search for the Standard Model Higgs boson with the ATLAS detector at the LHC is presented. The data sets used correspond to integrated luminosities from 4.6 fb(-1) to 4.9 fb(-1) of proton-proton collisions collected at root s = 7 TeV in 2011. The Higgs boson mass ranges of 111.4 GeV to 116.6 GeV, 119.4 GeV to 122.1 GeV, and 129.2 GeV to 541 GeV are excluded at the 95% confidence level, while the range 120 GeV to 560 GeV is expected to be excluded in the absence of a signal. An excess of events is observed at Higgs boson mass hypotheses around 126 GeV with a local significance of 2.9 standard deviations (sigma). The global probability for the background to produce an excess at lea…

Astrophysics::High Energy Astrophysical PhenomenaAcceleradors de partículesCol·lisions (Física nuclear)High Energy Physics::PhenomenologyHigh Energy Physics::ExperimentNuclear ExperimentPartícules (Física nuclear)Detectors de radiació
researchProduct