Search results for "F-Statistics"
showing 6 items of 6 documents
Low but contrasting neutral genetic differentiation shaped by winter temperature in European great tits.
2016
Gene flow is usually thought to reduce genetic divergence and impede local adaptation by homogenising gene pools between populations. However, evidence for local adaptation and phenotypic differentiation in highly mobile species, experiencing high levels of gene flow, is emerging. Assessing population genetic structure at different spatial scales is thus a crucial step towards understanding mechanisms underlying intraspecific differentiation and diversification. Here, we studied the population genetic structure of a highly mobile species - the great tit Parus major - at different spatial scales. We analysed 884 individuals from 30 sites across Europe including 10 close-by sites (< 50 km), u…
Fine-scale spatial genetic structure and gene dispersal in Silene latifolia
2010
Plants are sessile organisms, often characterized by limited dispersal. Seeds and pollen are the critical stages for gene flow. Here we investigate spatial genetic structure, gene dispersal and the relative contribution of pollen vs seed in the movement of genes in a stable metapopulation of the white campion Silene latifolia within its native range. This short-lived perennial plant is dioecious, has gravity-dispersed seeds and moth-mediated pollination. Direct measures of pollen dispersal suggested that large populations receive more pollen than small isolated populations and that most gene flow occurs within tens of meters. However, these studies were performed in the newly colonized rang…
New insights on water buffalo genomic diversity and post-domestication migration routes from medium density SNP chip data
2018
Made available in DSpace on 2018-12-11T16:52:11Z (GMT). No. of bitstreams: 0 Previous issue date: 2018-03-02 The domestic water buffalo is native to the Asian continent but through historical migrations and recent importations, nowadays has a worldwide distribution. The two types of water buffalo, i.e., river and swamp, display distinct morphological and behavioral traits, different karyotypes and also have different purposes and geographical distributions. River buffaloes from Pakistan, Iran, Turkey, Egypt, Romania, Bulgaria, Italy, Mozambique, Brazil and Colombia, and swamp buffaloes from China, Thailand, Philippines, Indonesia and Brazil were genotyped with a species-specific medium-dens…
A geometrical framework for f –statistics
2020
AbstractA detailed derivation of the f–statistics formalism is made from a geometrical framework. It is shown that the f–statistics appear when a genetic distance matrix is constrained to describe a four population phylogenetic tree. The choice of genetic metric is crucial and plays an outstanding role as regards the tree–like–ness criterion. The case of lack of treeness is interpreted in the formalism as presence of population admixture. In this respect, four formulas are given to estimate the admixture proportions. One of them is the so–called f4–ratio estimate and we show that a second one is related to a known result developed in terms of the fixation index FST. An illustrative numerica…
Population genetic structure of the butterflyMelitaea didyma(Nymphalidae) along a northern distribution range border
1996
The population genetic structure of the butterfly Melitaea didyma was studied along the northern distribution range border in Central Germany by means of allozyme electrophoresis. Individuals were sampled from a total of 21 habitat patches from four regions, and two provinces. Sampling was designed to estimate local vs. regional differentiation. High levels of variability were found, He= 0.14-0.21. The mean expected sample heterozygosity from one region, Mosel, was significantly lower than from the Hammelburg region, He= 0.17 and 0.19, respectively. Two hierarchical levels of genetic differentiation were found. Within regions individuals sampled from different patches behaved as belonging t…
Data from: Low but contrasting neutral genetic differentiation shaped by winter temperature in European great tits
2015
Gene flow is usually thought to reduce genetic divergence and impede local adaptation by homogenising gene pools between populations. However, evidence for local adaptation and phenotypic differentiation in highly mobile species, experiencing high levels of gene flow, is emerging. Assessing population genetic structure at different spatial scales is thus a crucial step towards understanding mechanisms underlying intraspecific differentiation and diversification. Here, we studied the population genetic structure of a highly mobile species – the great tit Parus major – at different spatial scales. We analysed 884 individuals from 30 sites across Europe including 10 close-by sites (< 50 km)…