Search results for "F508del-CFTR"

showing 3 items of 3 documents

An overview on chemical structures as ΔF508-CFTR correctors

2019

Deletion of phenylalanine at position 508 (F508del) in the CFTR protein, is the most common mutation causing cystic fibrosis (CF). F508del causes misfolding and rapid degradation of CFTR protein a defect that can be targeted with pharmacological agents termed “correctors”. Correctors belong to various chemical classes but are generally small molecules based on nitrogen sulfur or oxygen heterocycles. The mechanism of action of correctors is generally unknown but there is experimental evidence that some of them can directly act on mutant CFTR improving folding and stability. Here we overview the characteristics of the various F508del correctors described so far to obtain indications on key ch…

Protein FoldingCystic FibrosisCFTR correctorMutantCystic Fibrosis Transmembrane Conductance RegulatorPyrimidinonesmedicine.disease_cause01 natural sciencesF508del-CFTR03 medical and health sciencesMutant proteinDrug DiscoverymedicineAnimalsHumansCFTR030304 developmental biologyPharmacology0303 health sciencesMutationCFTR correctorsbiology010405 organic chemistryChemistryOrganic ChemistryCFTR; CFTR correctors; Cystic fibrosis; Cystic fibrosis transmembrane conductance regulator; F508del-CFTR; Animals; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Humans; Mutation; Protein Folding; Pyrimidinones; ThiazolesGeneral MedicineSettore CHIM/08 - Chimica FarmaceuticaSmall moleculeCystic fibrosis transmembrane conductance regulator0104 chemical sciencesCell biologyThiazolesMechanism of actionCystic fibrosiMutationbiology.proteinmedicine.symptomProtein Aδf508 cftrEuropean Journal of Medicinal Chemistry
researchProduct

Evaluation of Fused Pyrrolothiazole Systems as Correctors of Mutant CFTR Protein.

2021

Cystic fibrosis (CF) is a genetic disease caused by mutations that impair the function of the CFTR chloride channel. The most frequent mutation, F508del, causes misfolding and premature degradation of CFTR protein. This defect can be overcome with pharmacological agents named “correctors”. So far, at least three different classes of correctors have been identified based on the additive/synergistic effects that are obtained when compounds of different classes are combined together. The development of class 2 correctors has lagged behind that of compounds belonging to the other classes. It was shown that the efficacy of the prototypical class 2 corrector, the bithiazole corr-4a, could be impr…

Yellow fluorescent proteinProtein FoldingCystic FibrosisMutantPharmaceutical ScienceCystic Fibrosis Transmembrane Conductance RegulatorCarboxamidemedicine.disease_cause01 natural sciencesAnalytical Chemistrychemistry.chemical_compoundMutant ProteinDrug DiscoveryMoietyCFTR potentiatorCFTRchemistry.chemical_classification0303 health sciencesMutationbiologyChemistryChemistry (miscellaneous)Chloride channelMolecular MedicineHumanStereochemistrymedicine.drug_classCFTR correctorArticleF508del-CFTRlcsh:QD241-44103 medical and health scienceslcsh:Organic chemistrymedicineHumansBenzodioxolesPhysical and Theoretical ChemistryThiazoleCystic Fibrosi030304 developmental biology010405 organic chemistryOrganic ChemistryAminoimidazole Carboxamide0104 chemical sciencesThiazolesMutationbiology.proteinMutant ProteinsBenzodioxoleTricyclicMolecules (Basel, Switzerland)
researchProduct

HETEROCYCLIC COMPOUNDS AND MEDICAL USE THEREOF

2019

The present invention relates to heterocyclic nitrogen compounds, use thereof as a medicament and pharmaceutical compositions thereof. Furthermore, the invention provides combinations of compounds of general formula (I) with therapeutic agents, such as correctors, potentiators and amplifiers of dysfunctional proteins.

Cystic fibrosiCFTR correctorCystic fibrosis transmembrane conductance regulatorCFTRSettore CHIM/08 - Chimica FarmaceuticaF508del-CFTR
researchProduct