6533b820fe1ef96bd12790e8

RESEARCH PRODUCT

Evaluation of Fused Pyrrolothiazole Systems as Correctors of Mutant CFTR Protein.

Marilia BarrecaMario RendaMichele GenoveseVincenzo CilibrasiPaola BarrajaLuis J. V. GaliettaAlessandra MontalbanoVirginia Spanò

subject

Yellow fluorescent proteinProtein FoldingCystic FibrosisMutantPharmaceutical ScienceCystic Fibrosis Transmembrane Conductance RegulatorCarboxamidemedicine.disease_cause01 natural sciencesAnalytical Chemistrychemistry.chemical_compoundMutant ProteinDrug DiscoveryMoietyCFTR potentiatorCFTRchemistry.chemical_classification0303 health sciencesMutationbiologyChemistryChemistry (miscellaneous)Chloride channelMolecular MedicineHumanStereochemistrymedicine.drug_classCFTR correctorArticleF508del-CFTRlcsh:QD241-44103 medical and health scienceslcsh:Organic chemistrymedicineHumansBenzodioxolesPhysical and Theoretical ChemistryThiazoleCystic Fibrosi030304 developmental biology010405 organic chemistryOrganic ChemistryAminoimidazole Carboxamide0104 chemical sciencesThiazolesMutationbiology.proteinMutant ProteinsBenzodioxoleTricyclic

description

Cystic fibrosis (CF) is a genetic disease caused by mutations that impair the function of the CFTR chloride channel. The most frequent mutation, F508del, causes misfolding and premature degradation of CFTR protein. This defect can be overcome with pharmacological agents named “correctors”. So far, at least three different classes of correctors have been identified based on the additive/synergistic effects that are obtained when compounds of different classes are combined together. The development of class 2 correctors has lagged behind that of compounds belonging to the other classes. It was shown that the efficacy of the prototypical class 2 corrector, the bithiazole corr-4a, could be improved by generating conformationally-locked bithiazoles. In the present study, we investigated the effect of tricyclic pyrrolothiazoles as analogues of constrained bithiazoles. Thirty-five compounds were tested using the functional assay based on the halide-sensitive yellow fluorescent protein (HS-YFP) that measured CFTR activity. One compound, having a six atom carbocyle central ring in the tricyclic pyrrolothiazole system and bearing a pivalamide group at the thiazole moiety and a 5-chloro-2-methoxyphenyl carboxamide at the pyrrole ring, significantly increased F508del-CFTR activity. This compound could lead to the synthesis of a novel class of CFTR correctors.

10.3390/molecules26051275https://pubmed.ncbi.nlm.nih.gov/33652850