0000000000056676

AUTHOR

Luis J. V. Galietta

An overview on chemical structures as ΔF508-CFTR correctors

Deletion of phenylalanine at position 508 (F508del) in the CFTR protein, is the most common mutation causing cystic fibrosis (CF). F508del causes misfolding and rapid degradation of CFTR protein a defect that can be targeted with pharmacological agents termed “correctors”. Correctors belong to various chemical classes but are generally small molecules based on nitrogen sulfur or oxygen heterocycles. The mechanism of action of correctors is generally unknown but there is experimental evidence that some of them can directly act on mutant CFTR improving folding and stability. Here we overview the characteristics of the various F508del correctors described so far to obtain indications on key ch…

research product

Current development of CFTR potentiators in the last decade

Cystic fibrosis (CF) is a genetic disorder produced by the loss of function of CFTR, a main chloride channel involved in transepithelial salt and water transport. CFTR function can be rescued by small molecules called "potentiators" which increase gating activity of CFTR on epithelial surfaces. High throughput screening (HTS) assays allowed the identification of new chemical entities endowed with potentiator properties, further improved through medicinal chemistry optimization. In this review, the most relevant classes of CFTR potentiators developed in the last decade were explored, focusing on structure-activity relationships (SAR) of the different chemical entities, as a useful tool for t…

research product

Evaluation of Fused Pyrrolothiazole Systems as Correctors of Mutant CFTR Protein.

Cystic fibrosis (CF) is a genetic disease caused by mutations that impair the function of the CFTR chloride channel. The most frequent mutation, F508del, causes misfolding and premature degradation of CFTR protein. This defect can be overcome with pharmacological agents named “correctors”. So far, at least three different classes of correctors have been identified based on the additive/synergistic effects that are obtained when compounds of different classes are combined together. The development of class 2 correctors has lagged behind that of compounds belonging to the other classes. It was shown that the efficacy of the prototypical class 2 corrector, the bithiazole corr-4a, could be impr…

research product

Furocoumarins as multi-target agents in the treatment of cystic fibrosis.

Multi-target molecular entities, offer a path to progress both in understanding causes of disease and in defining effective small molecule treatments. Coumarin and its derivatives belong to an important group of natural compounds with diverse biological properties. They are found in vegetables and plants for which literature reports thousands of publications for the great variety of biological applications among which the photoprotective effects, thus being considered multi-targeting agents. Their furan condensed analogues constitute the family of furocoumarins, less represented in the literature, endowed with photosensitizing properties and often used for the treatment of skin diseases suc…

research product