Search results for "FACTORIZATION"
showing 10 items of 221 documents
Flow dominance and factorization of transverse momentum correlations in Pb-Pb collisions at the LHC
2017
Physical review letters 118(16), 162302 (2017). doi:10.1103/PhysRevLett.118.162302
Features of W production in p-p, p-Pb and Pb-Pb collisions
2017
We consider the production of inclusive W bosons in variety of high-energy hadronic collisions: p--p, p--$\overline{\rm p}$, p--Pb, and Pb--Pb. In particular, we focus on the resulting distributions of charged leptons from W decay that can be measured with relatively low backgrounds. The leading-order expressions within the collinearly factorized QCD indicate that the center-of-mass energy dependence at forward/backward rapidities should be well approximated by a simple power law. The scaling exponent is related to the small-$x$ behaviour of the quark distributions, which is largely driven by the parton evolution. An interesting consequence is the simple scaling law for the lepton charge as…
High-dimensional Big Data processing with dictionary learning and diffusion maps
2015
Algorithms for modern Big Data analysis deal with both massive amount of sam- ples and a large number of features (high-dimension). One way to cope with these challenges is to assume and discover the existence of localization in the data by uncovering its intrinsic geometry. This approach suggests that different data segments can be analyzed separately and then unified in order to gain an understanding of the whole phenomenon. Methods that utilize efficiently local- ized data are attractive for high-dimensional big data analysis, because they can be parallelized, and thus the computational resources, which are needed for their utilization, are realistic and affordable. These methods can explo…
The factorization method for electrical impedance tomography data from a new planar device.
2006
We present numerical results for two reconstruction methods for a new planar electrical impedance tomography device. This prototype allows noninvasive medical imaging techniques if only one side of a patient is accessible for electric measurements. The two reconstruction methods have different properties: one is a linearization-type method that allows quantitative reconstructions; the other one, that is, the factorization method, is a qualitative one, and is designed to detect anomalies within the body.
Assessment of nonnegative matrix factorization algorithms for electroencephalography spectral analysis.
2020
AbstractBackgroundNonnegative matrix factorization (NMF) has been successfully used for electroencephalography (EEG) spectral analysis. Since NMF was proposed in the 1990s, many adaptive algorithms have been developed. However, the performance of their use in EEG data analysis has not been fully compared. Here, we provide a comparison of four NMF algorithms in terms of accuracy of estimation, stability (repeatability of the results) and time complexity of algorithms with simulated data. In the practical application of NMF algorithms, stability plays an important role, which was an emphasis in the comparison. A Hierarchical clustering algorithm was implemented to evaluate the stability of NM…
Low-rank approximation based non-negative multi-way array decomposition on event-related potentials
2014
Non-negative tensor factorization (NTF) has been successfully applied to analyze event-related potentials (ERPs), and shown superiority in terms of capturing multi-domain features. However, the time-frequency representation of ERPs by higher-order tensors are usually large-scale, which prevents the popularity of most tensor factorization algorithms. To overcome this issue, we introduce a non-negative canonical polyadic decomposition (NCPD) based on low-rank approximation (LRA) and hierarchical alternating least square (HALS) techniques. We applied NCPD (LRAHALS and benchmark HALS) and CPD to extract multi-domain features of a visual ERP. The features and components extracted by LRAHALS NCPD…
Shared and Unshared Feature Extraction in Major Depression During Music Listening Using Constrained Tensor Factorization
2021
Ongoing electroencephalography (EEG) signals are recorded as a mixture of stimulus-elicited EEG, spontaneous EEG and noises, which poses a huge challenge to current data analyzing techniques, especially when different groups of participants are expected to have common or highly correlated brain activities and some individual dynamics. In this study, we proposed a data-driven shared and unshared feature extraction framework based on nonnegative and coupled tensor factorization, which aims to conduct group-level analysis for the EEG signals from major depression disorder (MDD) patients and healthy controls (HC) when freely listening to music. Constrained tensor factorization not only preserve…
Identical fits of nonnegative matrix/tensor factorization may correspond to different extracted event-related potentials
2010
Nonnegative Matrix / Tensor factorization (NMF/NTF) have been used in the study of EEG, and the fit (explained variation) is often used to evaluate the performance of a nonnegative decomposition algorithm. However, this parameter only reveals the information derived from the mathematical model and just exhibits the reliability of the algorithms, and the property of EEG can not be reflected. If fits of two algorithms are identical, it is necessary to examine whether the desired components extracted by them are identical too. In order to verify this doubt, we performed NMF and NTF on the same dataset of an auditory event-related potentials (ERPs), and found that the identical fits of NMF and …
Extract Mismatch Negativity and P3a through Two-Dimensional Nonnegative Decomposition on Time-Frequency Represented Event-Related Potentials
2010
This study compares the row-wise unfolding nonnegative tensor factorization (NTF) and the standard nonnegative matrix factorization (NMF) in extracting time-frequency represented event-related potentials—mismatch negativity (MMN) and P3a from EEG under the two-dimensional decomposition The criterion to judge performance of NMF and NTF is based on psychology knowledge of MMN and P3a MMN is elicited by an oddball paradigm and may be proportionally modulated by the attention So, participants are usually instructed to ignore the stimuli However the deviant stimulus inevitably attracts some attention of the participant towards the stimuli Thus, P3a often follows MMN As a result, if P3a was large…
Information Extraction from Binary Skill Assessment Data with Machine Learning
2021
Strength training exercises are essential for rehabilitation, improving our health as well as in sports. For optimal and safe training, educators and trainers in the industry should comprehend exercise form or technique. Currently, there is a lack of tools measuring in-depth skills of strength training experts. In this study, we investigate how data mining methods can be used to identify novel and useful skill patterns from a binary multiple choice questionnaire test designed to measure the knowledge level of strength training experts. A skill test assessing exercise technique expertise and comprehension was answered by 507 fitness professionals with varying backgrounds. A triangulated appr…