Search results for "FEMTOSECOND"

showing 10 items of 238 documents

Optical gratings induced by field-free alignment of molecules

2006

We analyze the alignment of molecules generated by a pair of crossed ultra-short pump pulses of different polarizations by a technique based on the induced time-dependent gratings. Parallel polarizations yield an intensity grating, while perpendicular polarizations induce a polarization grating. We show that both configurations can be interpreted at moderate intensity as an alignment induced by a single polarized pump pulse. The advantage of the perpendicular polarizations is to give a signal of alignment that is free from the plasma contribution. Experiments on femtosecond transient gratings with aligned molecules were performed in CO2 at room temperature in a static cell and at 30 K in a …

Physics[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics][PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]Quantum Physics[ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]business.industryFOS: Physical sciencesPhysics::OpticsElectromagnetically induced gratingPlasmaGratingPolarization (waves)01 natural sciencesMolecular physicsAtomic and Molecular Physics and OpticsImaging phantom010309 opticsOptics0103 physical sciencesFemtosecondPerpendicularMoleculeQuantum Physics (quant-ph)010306 general physicsbusiness
researchProduct

Optimization of field-free molecular alignment by phase-shaped laser pulses

2007

We theoretically demonstrate the optimization of field-free molecular alignment by phase-shaped femtosecond laser pulses. The effect is assessed in ${\mathrm{O}}_{2}$ at $T=60\phantom{\rule{0.3em}{0ex}}\mathrm{K}$ under realistic conditions of intensity and pulse shaping. The spectral laser phase is sampled through 128 control parameters and a self-learning evolutionary algorithm combined with a nonperturbative regime calculation is used in order to design the specific phase that maximizes the degree of alignment. The postpulse molecular alignment appears significantly enhanced compared to a Fourier-transform-limited pulse of same energy. The analysis of the target state reveals that the so…

Physics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]Degree (graph theory)business.industryPhase (waves)Order (ring theory)Laser01 natural sciencesPulse shapingAtomic and Molecular Physics and Opticslaw.invention010309 opticsOpticslaw0103 physical sciencesFemtosecondAtomic physics010306 general physicsbusinessIntensity (heat transfer)Energy (signal processing)
researchProduct

Field-free molecular alignment of CO2 mixtures in presence of collisional relaxation

2008

The present work explores the extension of the concept of short-pulse-induced alignment to dissipative environments within quantum mechanical density matrix formalism (Liouville equation) from the weak to the strong field regime. This is illustrated within the example of the CO2 molecule in mixture with Ar and He, at room temperature, for which a steep decrease of the alignment is observed at moderate pressure because of the collisional relaxation. The field-free alignment is measured by a polarization technique where the degree of alignment is monitored in the time domain by measuring the resulting transient birefringence with a probe pulse Raman induced polarization spectroscopy (RIPS) Co…

Physics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]relaxation dynamicsBirefringence[ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]Field (physics)femtosecond spectroscopyPolarization (waves)01 natural sciencesMolecular physicsInduced polarization010305 fluids & plasmassymbols.namesakeQuantum mechanics0103 physical sciencessymbolsDissipative systemRelaxation (physics)General Materials Sciencerotational coherence010306 general physicsRaman spectroscopySpectroscopySpectroscopymolecular alignment
researchProduct

Experimental generation of high-contrast Talbot images with an ultrashort laser pulse

2008

A femtosecond Ti:sapphire laser oscillator emitting pulses with 800 nm central wavelength, 10.9 fs pulse width, and 75 MHz repetition rate, combined with a dispersion-compensated diffractive system, was used to implement a large-area, high-contrast, broadband optical interference technique based on the Talbot effect. Chromatic artifacts associated with the huge spectrum of the optical source (approximately 150 nm) are compensated for with an air-separated hybrid diffractive-refractive lens doublet. The spatial resolution of the chromatically compensated Talbot images under femtosecond illumination is nearly identical to that achieved under continuous wave monochromatic illumination. Further…

Physicsbusiness.industryPhysics::OpticsAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic Materialslaw.inventionLens (optics)WavelengthOpticslawFemtosecondTalbot effectContinuous waveMonochromatic colorElectrical and Electronic EngineeringPhysical and Theoretical ChemistrybusinessUltrashort pulseDiffraction gratingOptics Communications
researchProduct

PEEM with high time resolution—imaging of transient processes and novel concepts of chromatic and spherical aberration correction

2006

The potential of time-resolved photoemission electron microscopy (PEEM) for imaging ultrafast processes and for aberration correction in full-field imaging is discussed. In particular, we focus on stroboscopic imaging of precessional magnetic excitations via XMCD-PEEM exploiting the time structure of synchrotron radiation (magnetic field pulse pump–X-ray probe). In a special bunch-compression mode at BESSY, a time resolution of about 15 ps has been obtained. Further, we discuss an all-optical pump–probe technique using femtosecond laser excitation. A highly promising alternative to stroboscopic imaging is an approach using time-resolved image detection. As a second application of time-resol…

Physicsbusiness.industryResolution (electron density)Synchrotron radiationSurfaces and InterfacesGeneral ChemistryCondensed Matter PhysicsLaserSurfaces Coatings and Filmslaw.inventionSpherical aberrationPhotoemission electron microscopyOpticslawChromatic aberrationFemtosecondMaterials ChemistrybusinessUltrashort pulseSurface and Interface Analysis
researchProduct

Delocalization of Nonlinear Optical Responses in Plasmonic Nanoantennas

2015

Remote excitation and emission of two-photon luminescence and second-harmonic generation are observed in micrometer long gold rod optical antennas upon local illumination with a tightly focused near-infrared femtosecond laser beam. We show that the nonlinear radiations can be emitted from the entire antenna and the measured far-field angular patterns bear the information regarding the nature and origins of the respective nonlinear processes. We demonstrate that the nonlinear responses are transported by the propagating surface plasmon at excitation frequency, enabling thereby polariton-mediated tailoring and design of nonlinear responses.

Physicsbusiness.industrySurface plasmonFOS: Physical sciencesPhysics::OpticsGeneral Physics and Astronomy02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesNonlinear systemDelocalized electronOptics0103 physical sciencesFemtosecondOptoelectronics010306 general physics0210 nano-technologybusinessLuminescencePlasmonExcitationPhysics - OpticsOptics (physics.optics)Coherence (physics)Physical Review Letters
researchProduct

Probing ultrafast thermalization with field-free molecular alignment

2012

International audience; The rotation-translation thermalization of CO2 gas is investigated 500 ps after its preheating by a nonresonant short and intense laser pulse. The temperature of thermalization is optically determined with two additional short laser pulses enabling a field-free molecular alignment process and its probing, respectively. The measurements are performed for various intensities of the preheat pulse, leading to the observation of different temperatures which are in very good agreement with classical molecular dynamics simulations. The results can be regarded as a step towards real-time tracking of ultrafast relaxation pathways in molecular motion.

Physicscollisional dynamics010304 chemical physicsField (physics)ultrafast nonlinear optics[PHYS.PHYS.PHYS-ATOM-PH]Physics [physics]/Physics [physics]/Atomic Physics [physics.atom-ph][ PHYS.PHYS.PHYS-ATOM-PH ] Physics [physics]/Physics [physics]/Atomic Physics [physics.atom-ph]femtosecond phenomenaRelaxation (NMR)ultrafast relaxationTracking (particle physics)Laser01 natural sciences37.10.Vz 34.50.Ez 42.50.MdAtomic and Molecular Physics and Opticslaw.inventionPulse (physics)Molecular dynamicsThermalisationlaw0103 physical sciencesAtomic physics010306 general physicsUltrashort pulsemolecular alignment
researchProduct

Chemically selective imaging of overlapping C-H stretching vibrations with time-resolved coherent anti-stokes Raman scattering (CARS) microscopy.

2014

Chemically selective imaging of spectrally overlapping compounds is studied with a time-resolved, femtosecond approach on coherent anti-Stokes Raman scattering (CARS) microscopy taking advantage of time-dependent oscillating CARS amplitude which is sensitive to different chemical components at different time points. Chemically selective imaging is demonstrated for composite material of polypropylene (PP) matrix and om-POSS (octamethyl polyhedral oligomeric silsesquioxane) microparticles having partly overlapping CH stretching vibrations. Inverse Fourier transformation (IFT) was applied to Raman spectra of PP and om-POSS, indicating that the oscillatory structures of the vibrational decays d…

Physics::Biological PhysicsChemistryAnalytical chemistrySilsesquioxaneSurfaces Coatings and FilmsMatrix (chemical analysis)symbols.namesakechemistry.chemical_compoundFourier transformAmplitudeMicroscopyFemtosecondMaterials ChemistrysymbolsPhysical and Theoretical ChemistryRaman spectroscopyta116Raman scatteringThe journal of physical chemistry. B
researchProduct

Disentangling size effects and spectral inhomogeneity in carbon nanodots by ultrafast dynamical hole-burning.

2018

Carbon nanodots (CDs) are a novel family of nanomaterials exhibiting unique optical properties. In particular, their bright and tunable fluorescence redefines the paradigm of carbon as a "black" material and is considered very appealing for many applications. While the field keeps growing, understanding CDs fundamental properties and relating them to their variable structures becomes more and more critical. Two crucial problems concern the effect of size on the electronic structure of CDs, and to what extent their optical properties are influenced by structural disorder. Furthermore, it remains largely unclear whether traditional concepts borrowed from the photo-physics of semiconductor qua…

Potential wellMaterials scienceField (physics)530 Physicschemistry.chemical_element02 engineering and technologyElectronic structure010402 general chemistry021001 nanoscience & nanotechnologyCondensed Matter::Mesoscopic Systems and Quantum Hall Effect620 Engineeringcarbon nanodots fluorescent nanomaterials pump probe carbon materials01 natural sciences0104 chemical sciencesNanomaterialsCondensed Matter::Materials SciencechemistryChemical physicsAtomic electron transitionFemtosecond540 ChemistryGeneral Materials Science0210 nano-technologyCarbonUltrashort pulseNanoscale
researchProduct

2015

AbstractLight absorption can trigger biologically relevant protein conformational changes. The light-induced structural rearrangement at the level of a photoexcited chromophore is known to occur in the femtosecond timescale and is expected to propagate through the protein as a quake-like intramolecular motion. Here we report direct experimental evidence of such ‘proteinquake’ observed in myoglobin through femtosecond X-ray solution scattering measurements performed at the Linac Coherent Light Source X-ray free-electron laser. An ultrafast increase of myoglobin radius of gyration occurs within 1 picosecond and is followed by a delayed protein expansion. As the system approaches equilibrium i…

Quantitative Biology::Biomolecules0303 health sciencesMultidisciplinaryMaterials sciencePhotodissociationFree-electron laserGeneral Physics and Astronomy02 engineering and technologyGeneral ChemistryChromophore021001 nanoscience & nanotechnologyMolecular physicsGeneral Biochemistry Genetics and Molecular Biology03 medical and health scienceschemistry.chemical_compoundMyoglobinchemistryPicosecondFemtosecondRadius of gyrationsense organsPhysics::Chemical Physics0210 nano-technologyUltrashort pulse030304 developmental biologyNature Communications
researchProduct