Search results for "FER"

showing 10 items of 33109 documents

Determination of Core Size Dependency on the EMI Suppression in Cable Ferrites

2020

Electromagnetic Compatibility (EMC) engineering should be approached via the systems approach, considering EMC throughout the design to anticipate possible electromagnetic interferences (EMI) problems. Nevertheless, an EMI source may appear when the designed device is supplied via an external power system or it is connected to another device to communicate to it. In these both cases, the cables or interfaces that interconnect the systems could represent the EMI source. Thereby, one of the most common techniques for reducing EMI in cables is the application of an EMI suppressor such as sleeve ferrite cores to them. The advantage of this solution is that it does not involve redesign the elect…

010302 applied physicsInterconnectionComputer scienceElectromagnetic compatibility02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesFerrite coreInductanceElectric power systemInterference (communication)EMI0103 physical sciencesElectronic engineeringElectronics0210 nano-technology2020 International Symposium on Electromagnetic Compatibility - EMC EUROPE
researchProduct

Determination of Contact Potential Difference by the Kelvin Probe (Part II) 2. Measurement System by Involving the Composite Bucking Voltage

2016

Abstract The present research is devoted to creation of a new low-cost miniaturised measurement system for determination of potential difference in real time and with high measurement resolution. Furthermore, using the electrode of the reference probe, Kelvin method leads to both an indirect measurement of electronic work function or contact potential of the sample and measurement of a surface potential for insulator type samples. The bucking voltage in this system is composite and comprises a periodically variable component. The necessary steps for development of signal processing and tracking are described in detail.

010302 applied physicsKelvin probe force microscopeMaterials sciencesurface potentialbusiness.industrySystem of measurementPhysicsQC1-999Composite numberGeneral EngineeringGeneral Physics and Astronomy02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesOpticscontact potential differencekelvin probe0103 physical sciences0210 nano-technologybusinessVolta potentialVoltageLatvian Journal of Physics and Technical Sciences
researchProduct

Determination of Contact Potential Difference by the Kelvin Probe (Part I) I. Basic Principles of Measurements

2016

Abstract Determination of electric potential difference using the Kelvin probe, i.e. vibrating capacitor technique, is one of the most sensitive measuring procedures in surface physics. Periodic modulation of distance between electrodes leads to changes in capacitance, thereby causing current to flow through the external circuit. The procedure of contactless, non-destructive determination of contact potential difference between an electrically conductive vibrating reference electrode and an electrically conductive sample is based on precise control measurement of Kelvin current flowing through a capacitor. The present research is devoted to creation of a new low-cost miniaturised measuremen…

010302 applied physicsKelvin probe force microscopesurface potentialMaterials scienceCondensed matter physicsPhysicsQC1-999General EngineeringGeneral Physics and Astronomy01 natural sciencescontact potential differencekelvin probe0103 physical sciences010306 general physicsVolta potentialLatvian Journal of Physics and Technical Sciences
researchProduct

Laser Ultrasonics Inspection for Defect Evaluation on Train Wheel

2019

Abstract Passengers’ safety and in-service life of wheelset axles play an important role in railway vehicles. For this reason, periodic inspections are necessary. Among non-destructive techniques, ultrasonic ones are widely applied in this field. The main disadvantage of conventional ultrasonic techniques is that the overall inspection of wheels requires the train to be put out-of-service and disassembly each part, which is time-consuming and expensive. In this paper, a non-conventional non-contact laser ultrasonic inspection for train wheels is proposed. The proposed method uses a laser interferometer to receive the ultrasonic wave without contact. The receiving system allows choosing the …

010302 applied physicsLaser ultrasonicsUltrasonic applications Ultrasonic waves Laser ultrasonicsComputer scienceMechanical EngineeringAcousticsUltrasonic testingNon-destructive testing Non-contact techniques Laser ultrasonic Train wheel inspectionCondensed Matter PhysicsLaser01 natural scienceslaw.inventionAxleInterferometrySettore ING-IND/14 - Progettazione Meccanica E Costruzione Di MacchineComplex geometrylaw0103 physical sciencesGeneral Materials ScienceUltrasonic sensor010301 acousticsReliability (statistics)
researchProduct

Tuning of interfacial perpendicular magnetic anisotropy and domain structures in magnetic thin film multilayers

2019

We investigate the magnetic domain structures and the perpendicular magnetic anisotropy (PMA) arising in CoFeB films interfaced with selected heavy metal (HM) layers with large spin Hall angles in HM/CoFeB/MgO (HM = W, Pt, Pd, W x Ta1−x ) stacks as a function of CoFeB thickness and composition for both as-deposited and annealed materials stacks. The coercivity and the anisotropy fields of annealed material stacks are higher than for the as-deposited stacks due to crystallisation of the ferromagnetic layer. Generally a critical thickness of MgO > 1 nm provides adequate oxide formation at the top interface as a requirement for the generation of PMA. We demonstrate that in stacks with Pt as th…

010302 applied physicsMaterials scienceAcoustics and UltrasonicsCondensed matter physicsMagnetic domainAnnealing (metallurgy)02 engineering and technologyCoercivity021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsTransition metalFerromagnetismHall effect0103 physical sciencesThin film0210 nano-technologyAnisotropyJournal of Physics D: Applied Physics
researchProduct

Multiple low-frequency broad band gaps generated by a phononic crystal of periodic circular cavity sandwich plates

2017

Abstract We propose a new type of phononic crystal (PnC) composed of a periodic alternation of circular cavity sandwich plates. In the low-frequency regime, the crystal can modulate the propagation of flexural waves. Governing equations are deduced basing on the classical theory of coupled extensional and flexural vibrations of plates. The dispersion relation of the infinite PnC is calculated by combining the transfer matrix method with Bloch theory. The dynamic response of the PnC with finite unit cells is further studied with finite element analysis. An experiment is carried out to demonstrate the performance of the PnC in vibration isolation. Numerical results and experimental results bo…

010302 applied physicsMaterials scienceBand gapbusiness.industryAttenuationTransfer-matrix method (optics)02 engineering and technologyStructural engineeringLow frequency021001 nanoscience & nanotechnology01 natural sciencesFinite element methodComputational physicsCrystalVibration isolationDispersion relation0103 physical sciencesCeramics and Composites0210 nano-technologybusinessCivil and Structural EngineeringComposite Structures
researchProduct

The challenge in realizing an exchange coupled BiFeO3-double perovskite bilayer

2020

Abstract In this work we propose a device design for efficient voltage control of magnetism. The magnetization of a ferrimagnetic double perovskite may be manipulated by an exchange coupled layer of multiferroic BiFeO3. Bilayers of Barium doped BiFeO3 and ferrimagnetic double perovskite Sr2FeMoO6 have been prepared by pulsed laser deposition motivated by the possibility of strong interlayer exchange coupling. While single layers of each material show high quality we observe that in both stacking orders the first layer decomposes during the deposition of the second layer. The reason for the decomposition are strongly differing growth conditions for BiFeO3 and Sr2FeMoO6. This means that the g…

010302 applied physicsMaterials scienceBilayer02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesElectronic Optical and Magnetic MaterialsPulsed laser depositionMagnetizationExchange biasFerrimagnetismChemical physics0103 physical sciencesMultiferroics0210 nano-technologyLayer (electronics)Perovskite (structure)Journal of Magnetism and Magnetic Materials
researchProduct

Temperature Coefficients of Crystal Defects in Multicrystalline Silicon Wafers

2020

This article investigates the influence of crystallographic defects on the temperature sensitivity of multicrystalline silicon wafers. The thermal characteristics of the implied open-circuit voltage is assessed since it determines most of the total temperature sensitivity of the material. Spatially resolved temperature-dependent analysis is performed on wafers from various brick positions; intragrain regions, grain boundaries, and dislocation clusters are examined. The crystal regions are studied before and after subjecting the wafers to phosphorus gettering, aiming to alter the metallic impurity concentration in various regions across the wafers. Most intragrain regions and grain boundarie…

010302 applied physicsMaterials scienceCondensed matter physics02 engineering and technologyAtmospheric temperature range021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesCrystallographic defectElectronic Optical and Magnetic MaterialsCrystalGetterImpurity0103 physical sciencesWaferGrain boundaryElectrical and Electronic EngineeringDislocation0210 nano-technologyIEEE Journal of Photovoltaics
researchProduct

Electronic structure and magnetic order in Cu Zn(1−)O: A study GGA and GGA + U

2019

Abstract Based on density functional theory within GGA formalism, first-principles calculations were performed in order to study the structural, electronic, and magnetic properties of Cu-doped ZnO compound with dopant concentrations x = 0.028, 0.042, 0.056, and 0.125. It was found that CuxZn(1−x)O is ferromagnetic for both the closest and farthest impurity distances, but it is more stable energetically for the closest one. For all concentrations we obtained nearly half − metallic behavior. The calculations show that two substitutional Cu atoms introduce a magnetic moment of about 2.0 μB for all dopant concentrations. The results indicate that the magnetic ground state originates from the st…

010302 applied physicsMaterials scienceCondensed matter physicsDopantMagnetic momentSpins02 engineering and technologyElectronic structure021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesElectronic Optical and Magnetic MaterialsCondensed Matter::Materials ScienceFerromagnetismImpurity0103 physical sciencesCondensed Matter::Strongly Correlated ElectronsDensity functional theoryElectrical and Electronic Engineering0210 nano-technologyGround statePhysica B: Condensed Matter
researchProduct

Half-Heusler materials as model systems for phase-separated thermoelectrics

2015

Semiconducting half-Heusler compounds based on NiSn and CoSb have attracted attention because of their good performance as thermoelectric materials. Nanostructuring of the materials was experimentally established through phase separation in (T1−x′Tx″)T(M1−yMy′) alloys when mixing different transition metals (T, T′, T″) or main group elements (M, M′). The electric transport properties of such alloys depend not only on their micro- or nanostructure but also on the atomic-scale electronic structure. In the present work, the influence of the band structure and density of states on the electronic transport and thermoelectric properties is investigated in detail for the constituents of phase-sepa…

010302 applied physicsMaterials scienceCondensed matter physicsFermi energy02 engineering and technologySurfaces and InterfacesElectronic structureCubic crystal system021001 nanoscience & nanotechnologyCondensed Matter PhysicsThermoelectric materials01 natural sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsPhase (matter)0103 physical sciencesThermoelectric effectMaterials ChemistryDensity of statesElectrical and Electronic Engineering0210 nano-technologyElectronic band structurephysica status solidi (a)
researchProduct