Search results for "FISICA"

showing 10 items of 5838 documents

(H,ρ)-induced dynamics and large time behaviors

2018

In some recent papers, the so called (H,ρ)-induced dynamics of a system S whose time evolution is deduced adopting an operatorial approach, borrowed in part from quantum mechanics, has been introduced. Here, H is the Hamiltonian for S, while ρ is a certain rule applied periodically (or not) on S. The analysis carried on throughout this paper shows that, replacing the Heisenberg dynamics with the (H,ρ)-induced one, we obtain a simple, and somehow natural, way to prove that some relevant dynamical variables of S may converge, for large t, to certain asymptotic values. This cannot be so, for finite dimensional systems, if no rule is considered. In this case, in fact, any Heisenberg dynamics im…

(Hρ)-induced dynamicOperatorial modelSchrödinger and Heisenberg dynamicStressed bacterial population(Hρ)-induced dynamics; Operatorial models; Schrödinger and Heisenberg dynamics; Stressed bacterial populations; Statistics and Probability; Condensed Matter PhysicsSettore MAT/07 - Fisica Matematica
researchProduct

Remnants of Anderson localization in prethermalization induced by white noise

2017

We study the non-equilibrium evolution of a one-dimensional quantum Ising chain with spatially disordered, time-dependent, transverse fields characterised by white noise correlation dynamics. We establish pre-thermalization in this model, showing that the quench dynamics of the on-site transverse magnetisation first approaches a metastable state unaffected by noise fluctuations, and then relaxes exponentially fast towards an infinite temperature state as a result of the noise. We also consider energy transport in the model, starting from an inhomogeneous state with two domain walls which separate regions characterised by spins with opposite transverse magnetization. We observe at intermedia…

---Anderson localizationGeneric propertyFOS: Physical sciences01 natural sciencesSettore FIS/03 - Fisica Della Materia010305 fluids & plasmasMetastability0103 physical sciencesElectronicOptical and Magnetic MaterialsStatistical physics010306 general physicsQuantumCondensed Matter - Statistical MechanicsElectronic Optical and Magnetic Materials; Condensed Matter PhysicsPhysicsQuantum PhysicsStatistical Mechanics (cond-mat.stat-mech)SpinsElectronic Optical and Magnetic MaterialWhite noiseCondensed Matter PhysicsTransverse planeQuantum Physics (quant-ph)Coherence (physics)Physical Review B
researchProduct

Reinforcement learning approach to nonequilibrium quantum thermodynamics

2021

We use a reinforcement learning approach to reduce entropy production in a closed quantum system brought out of equilibrium. Our strategy makes use of an external control Hamiltonian and a policy gradient technique. Our approach bears no dependence on the quantitative tool chosen to characterize the degree of thermodynamic irreversibility induced by the dynamical process being considered, require little knowledge of the dynamics itself and does not need the tracking of the quantum state of the system during the evolution, thus embodying an experimentally non-demanding approach to the control of non-equilibrium quantum thermodynamics. We successfully apply our methods to the case of single- …

---Computer scienceFOS: Physical sciencesGeneral Physics and AstronomyNon-equilibrium thermodynamics01 natural sciencesSettore FIS/03 - Fisica Della Materia010305 fluids & plasmassymbols.namesakeQuantum stateSHORTCUTS0103 physical sciencesQuantum systemReinforcement learningStatistical physics010306 general physicsQuantum thermodynamicsCondensed Matter - Statistical MechanicsADIABATICITYQuantum PhysicsStatistical Mechanics (cond-mat.stat-mech)Entropy productionENTROPYsymbolsQuantum Physics (quant-ph)Hamiltonian (quantum mechanics)
researchProduct

Vacancy-like Dressed States in Topological Waveguide QED

2020

We identify a class of dressed atom-photon states formingat the same energy of the atom at any coupling strength. As a hallmark, their photonic component is an eigenstate of the bare photonic bath with a vacancy in place of the atom. The picture accommodates waveguide-QED phenomena where atoms behave as perfect mirrors, connecting in particular dressed bound states (BS) in the continuum or BIC with geometrically-confined photonic modes. When applied to photonic lattices, the framework provides a general criterion to predict dressed BS in lattices with topological properties by putting them in one-to-one correspondence with photonic BS. New classes of dressed BS are thus predicted in the pho…

---Condensed Matter::Quantum GasesPhysicsQuantum PhysicsWaveguide (electromagnetism)PhotonSettore FIS/02 - Fisica Teorica Modelli E Metodi MatematiciContinuum (topology)business.industryFOS: Physical sciencesPhysics::OpticsGeneral Physics and Astronomy01 natural sciencesCavity QED Photonic bound states topological latticeVacancy defectQuantum mechanics0103 physical sciencesAtomBound statePhysics::Atomic PhysicsPhotonicsQuantum Physics (quant-ph)010306 general physicsbusinessEigenvalues and eigenvectors
researchProduct

Entanglement entropy in a periodically driven quantum Ising chain

2016

We numerically study the dynamics of entanglement entropy, induced by an oscillating time periodic driving of the transverse field, h(t), of a one-dimensional quantum Ising chain. We consider several realizations of h(t), and we find a number of results in analogy with entanglement entropy dynamics induced by a sudden quantum quench. After short-time relaxation, the dynamics of entanglement entropy synchronises with h(t), displaying an oscillatory behaviour at the frequency of the driving. Synchronisation in the dynamics of entanglement entropy, is spoiled by the appearance of quasi-revivals which fade out in the thermodynamic limit, and which we interpret using a quasi-particle picture ada…

---Electronic Optical and Magnetic Materials; Condensed Matter PhysicsPhysicsQuantum discordQuantum PhysicsStatistical Mechanics (cond-mat.stat-mech)Electronic Optical and Magnetic MaterialConfiguration entropyFOS: Physical sciencesQuantum entanglementCondensed Matter PhysicsSquashed entanglement01 natural sciencesTopological entropy in physicsSettore FIS/03 - Fisica Della MateriaQuantum relative entropy010305 fluids & plasmasQuantum mechanics0103 physical sciencesQuantum Physics (quant-ph)010306 general physicsEntropy (arrow of time)Joint quantum entropyCondensed Matter - Statistical Mechanics
researchProduct

Work fluctuations in bosonic Josephson junctions

2016

We calculate the first two moments and full probability distribution of the work performed on a system of bosonic particles in a two-mode Bose-Hubbard Hamiltonian when the self-interaction term is varied instantaneously or with a finite-time ramp. In the instantaneous case, we show how the irreversible work scales differently depending on whether the system is driven to the Josephson or Fock regime of the bosonic Josephson junction. In the finite-time case, we use optimal control techniques to substantially decrease the irreversible work to negligible values. Our analysis can be implemented in present-day experiments with ultracold atoms and we show how to relate the work statistics to that…

---Josephson effectPopulationFOS: Physical sciences01 natural sciencesSettore FIS/03 - Fisica Della Materia010305 fluids & plasmasFock spacesymbols.namesakequant-phUltracold atomQuantum mechanics0103 physical sciences010306 general physicseducationPhysicsCondensed Matter::Quantum GasesQuantum Physicseducation.field_of_studyOptimal controlAtomic and Molecular Physics and OpticsQuantum Gases (cond-mat.quant-gas)symbolsProbability distributionCondensed Matter - Quantum GasesHamiltonian (quantum mechanics)Quantum Physics (quant-ph)cond-mat.quant-gas
researchProduct

High-pressure characterization of multifunctional CrVO4

2020

[EN] The structural stability and physical properties of CrVO(4)under compression were studied by x-ray diffraction, Raman spectroscopy, optical absorption, resistivity measurements, andab initiocalculations up to 10 GPa. High-pressure x-ray diffraction and Raman measurements show that CrVO(4)undergoes a phase transition from the ambient pressure orthorhombic CrVO4-type structure (Cmcm space group, phase III) to the high-pressure monoclinic CrVO4-V phase, which is proposed to be isomorphic to the wolframite structure. Such a phase transition (CrVO4-type -> wolframite), driven by pressure, also was previously observed in indium vanadate. The crystal structure of both phases and the pressure …

-typeoptical absorptionCondensed Matter - Materials Sciencehigh-pressureCrVOOther Physics TopicsHigh-pressureOptical absorption4Settore ING-IND/22 - Scienza e Tecnologia dei MaterialiMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesAnnan fysikCrVO4-typeX-ray diffractionx-ray diffractionRamanspectroscopyphase transitionFISICA APLICADARaman spectroscopyCrVO; 4; -type; high-pressure; optical absorption; phase transition; Raman spectroscopy; X-ray diffractionPhase transition
researchProduct

Dynamical learning of a photonics quantum-state engineering process

2021

Abstract. Experimental engineering of high-dimensional quantum states is a crucial task for several quantum information protocols. However, a high degree of precision in the characterization of the noisy experimental apparatus is required to apply existing quantum-state engineering protocols. This is often lacking in practical scenarios, affecting the quality of the engineered states. We implement, experimentally, an automated adaptive optimization protocol to engineer photonic orbital angular momentum (OAM) states. The protocol, given a target output state, performs an online estimation of the quality of the currently produced states, relying on output measurement statistics, and determine…

/dk/atira/pure/subjectarea/asjc/2200/2204/dk/atira/pure/subjectarea/asjc/2500/2504Biomedical EngineeringphotonicsFOS: Physical sciencesquantum mechanicSettore FIS/03 - Fisica Della MateriaQuantum walkquantum informationquantum state engineeringqunatum informationblack-box optimizationQuantum Physicsquantum information; orbital angular momentum; black-box optimization; quantum state engineering; photonics/dk/atira/pure/subjectarea/asjc/3100/3107Orbital angular momentumState engineeringGeneral MedicineAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsAlgorithmmachine learningorbital angular momentumBlack-box optimizationQuantum Physics (quant-ph)Optics (physics.optics)Physics - OpticsAdvanced Photonics
researchProduct

The filter and calibration wheel for the ATHENA wide field imager

2016

The planned filter and calibration wheel for the Wide Field Imager (WFI) instrument on Athena is presented. With four selectable positions it provides the necessary functions, in particular an UV/VIS blocking filter for the WFI detectors and a calibration source. Challenges for the filter wheel design are the large volume and mass of the subsystem, the implementation of a robust mechanism and the protection of the ultra-thin filter with an area of 160 mm square. This paper describes performed trade-offs based on simulation results and describes the baseline design in detail. Reliable solutions are envisaged for the conceptual design of the filter and calibration wheel. Four different varian…

010302 applied physicsComputer scienceDetectorFilter wheel mechanism FEM structural and acoustic analysis ATHENA WFIVolume (computing)Blocking (statistics)01 natural sciencesSquare (algebra)Settore FIS/05 - Astronomia E AstrofisicaPosition (vector)Filter (video)0103 physical sciencesElectronic engineeringCalibration010303 astronomy & astrophysicsSimulation
researchProduct

Bandgap behavior and singularity of the domain-induced light scattering through the pressure-induced ferroelectric transition in relaxor ferroelectri…

2018

[EN] In this letter, we have investigated the electronic structure of A(x)Ba(1-x)Nb(2)O(6) relaxor ferroelectrics on the basis of optical absorption spectroscopy in unpoled single crystals with A = Sr and Ca under high pressure. The direct character of the fundamental transition could be established by fitting Urbach's rule to the photon energy dependence of the absorption edge yielding bandgaps of 3.44(1) eV and 3.57(1) eV for A = Sr and Ca, respectively. The light scattering by ferroelectric domains in the pre-edge spectral range has been studied as a function of composition and pressure. After confirming with x-ray diffraction the occurrence of the previously observed ferroelectric to pa…

010302 applied physicsDiffractionPhase transitionMaterials sciencePhysics and Astronomy (miscellaneous)Absorption spectroscopyCondensed matter physics02 engineering and technologyPhoton energy021001 nanoscience & nanotechnology01 natural sciencesFerroelectricityLight scatteringCRYSTALSTEMPERATURE-DEPENDENCEAbsorption edgeCALCIUM BARIUM NIOBATEFISICA APLICADA0103 physical sciencesDirect and indirect band gaps0210 nano-technologyCALCIUM BARIUM NIOBATE TEMPERATURE-DEPENDENCE CRYSTALS
researchProduct