Search results for "FLARE"
showing 10 items of 153 documents
Investigating the Response of Loop Plasma to Nanoflare Heating Using RADYN Simulations
2018
We present the results of 1D hydrodynamic simulations of coronal loops that are subject to nanoflares, caused by either in situ thermal heating or nonthermal electron (NTE) beams. The synthesized intensity and Doppler shifts can be directly compared with Interface Region Imaging Spectrograph (IRIS) and Atmospheric Imaging Assembly (AIA) observations of rapid variability in the transition region (TR) of coronal loops, associated with transient coronal heating. We find that NTEs with high enough low-energy cutoff (EC) deposit energy in the lower TR and chromosphere, causing blueshifts (up to approximately 20 kilometers per second) in the IRIS Si IV lines, which thermal conduction cannot repro…
Modelling of asymmetric nanojets in coronal loops
2021
Context. Observations of reconnection jets in the solar corona are emerging as a possible diagnostic for studying highly elusive coronal heating. Such jets, and in particular those termed nanojets, can be observed in coronal loops and have been linked to nanoflares. However, while models successfully describe the bilateral post-reconnection magnetic slingshot effect that leads to the jets, observations reveal that nanojets are unidirectional or highly asymmetric, with only the jet travelling inward with respect to the coronal loop’s curvature being clearly observed. Aims. The aim of this work is to address the role of the curvature of the coronal loop in the generation and evolution of asym…
Variable X-ray emission from the accretion shock in the classical T Tauri star V2129 Ophiuchi
2011
The soft X-ray emission from high density plasma in CTTS is associated with the accretion process. It is still unclear whether this high density cool plasma is heated in the accretion shock, or if it is coronal plasma fed/modified by the accretion process. We conducted a coordinated quasi-simultaneous optical and X-ray observing campaign of the CTTS V2129 Oph (Chandra/HETGS data to constrain the X-ray emitting plasma components, and optical observations to constrain the characteristics of accretion and magnetic field). We analyze a 200 ks Chandra/HETGS observation of V2129 Oph, subdivided into two 100 ks segments, corresponding to two different phases within one stellar rotation. The X-ray …
Viewing the Sun as an X-ray star
2003
The Sun is the late-type star we can study with the highest level of detail. In the interpretation of stellar data, therefore, it is often assumed that the physical processes of the coronae of late-type stars are similar to those of the solar corona, i.e. the "solar-stellar analogy". In order to investigate the validity of this assumption, we have started a program to study systematically the Sun as an X-ray star. Our program aims to explore how far the solar model can be applied to other stars. In this paper we review the results obtained from these studies and, in particular, we discuss the variability of a star identical to the Sun during its cycle, the contribution of different coronal …
A framework for remission in SLE
2017
ObjectivesTreat-to-target recommendations have identified ‘remission’ as a target in systemic lupus erythematosus (SLE), but recognise that there is no universally accepted definition for this. Therefore, we initiated a process to achieve consensus on potential definitions for remission in SLE.MethodsAn international task force of 60 specialists and patient representatives participated in preparatory exercises, a face-to-face meeting and follow-up electronic voting. The level for agreement was set at 90%.ResultsThe task force agreed on eight key statements regarding remission in SLE and three principles to guide the further development of remission definitions:1. Definitions of remission wi…
Evidence of nonthermal particles in coronal loops heated impulsively by nanoflares
2014
The physical processes causing energy exchange between the Sun's hot corona and its cool lower atmosphere remain poorly understood. The chromosphere and transition region (TR) form an interface region between the surface and the corona that is highly sensitive to the coronal heating mechanism. High resolution observations with the Interface Region Imaging Spectrograph (IRIS) reveal rapid variability (about 20 to 60 seconds) of intensity and velocity on small spatial scales at the footpoints of hot dynamic coronal loops. The observations are consistent with numerical simulations of heating by beams of non-thermal electrons, which are generated in small impulsive heating events called "corona…
The patient with autoimmune disorders
2021
Persistence of disease flares is associated with an inadequate colchicine dose in familial Mediterranean fever: A national multicenter longitudinal s…
2021
Familial Mediterranean fever (FMF) is characterized by self limited episodes of fever and polyserositis.1 MEFV gene en codes for a protein named Pyrin, which plays a pivotal role in the activation and secretion of IL-1.2 Daily colchicine is highly effective in preventing attacks in this disorder in a dose-related fashion.3 Many definitions of colchicine resistance are available in the literature. The European League Against Rheumatism (EULAR) guidelines defined resistance as one or more attacks per month in compliant patients who had been receiving the maxi mally tolerated dose for at least 6 months.4 A similar definition was confirmed by a recent consensus among experts.5 In the present na…
Multimessenger search for sources of gravitational waves and high-energy neutrinos: Initial results for LIGO-Virgo and IceCube
2014
Made available in DSpace on 2022-04-29T07:21:49Z (GMT). No. of bitstreams: 0 Previous issue date: 2014-11-17 We report the results of a multimessenger search for coincident signals from the LIGO and Virgo gravitational-wave observatories and the partially completed IceCube high-energy neutrino detector, including periods of joint operation between 2007-2010. These include parts of the 2005-2007 run and the 2009-2010 run for LIGO-Virgo, and IceCube's observation periods with 22, 59 and 79 strings. We find no significant coincident events, and use the search results to derive upper limits on the rate of joint sources for a range of source emission parameters. For the optimistic assumption of …
Quasi-Periodic Pulsations in Solar and Stellar Flares: A Review of Underpinning Physical Mechanisms and Their Predicted Observational Signatures
2021
The phenomenon of quasi-periodic pulsations (QPPs) in solar and stellar flares has been known for over 50 years and significant progress has been made in this research area. It has become clear that QPPs are not rare—they are found in many flares and, therefore, robust flare models should reproduce their properties in a natural way. At least fifteen mechanisms/models have been developed to explain QPPs in solar flares, which mainly assume the presence of magnetohydrodynamic (MHD) oscillations in coronal structures (magnetic loops and current sheets) or quasi-periodic regimes of magnetic reconnection. We review the most important and interesting results on flare QPPs, with an emphasis on the…