Search results for "FLUID"

showing 10 items of 5513 documents

Demo 70. Turbulencia

2013

Objetivos: Comprender la utilizad del número de Reynolds para predecir la ocurrencia de turbulencia.

turbulencianúmero de Reynoldsfluidos
researchProduct

Nonlinear evolution equations for turbulent superfluids

2010

In this paper a system of evolution equations for turbulent superfluid helium is written in the nonlinear regime, choosing as fundamental fields the density, the velocity, the heat flux, the non-equilibrium temperature and the average vortex line density per unit volume. Approximate equations are written, where second order terms in the non-equilibrium quantities are retained.

turbulent superfluid Nonlinear evolution equationsSettore MAT/05 - Analisi MatematicaSettore MAT/07 - Fisica Matematica
researchProduct

Strictly correlated electrons approach to excitation energies of dissociating molecules

2019

In this work we consider a numerically solvable model of a two-electron diatomic molecule to study a recently proposed approximation based on the density functional theory of so-called strictly correlated electrons (SCE). We map out the full two-particle wave function for a wide range of bond distances and interaction strengths and obtain analytic results for the two-particle states and eigenenergies in various limits of strong and weak interactions, and in the limit of large bond distance. We then study the so-called Hartree-exchange-correlation (Hxc) kernel of time-dependent density functional theory which is a key ingredient in calculating excitation energies. We study an approximation b…

two-electron diatomic moleculeFOS: Physical sciencesElectron01 natural sciences010305 fluids & plasmasCondensed Matter - Strongly Correlated ElectronsQuantum mechanics0103 physical sciencesstrictly correlated electrons010306 general physicsWave functionAdiabatic processta116approximationdensity functional theoryPhysicsStrongly Correlated Electrons (cond-mat.str-el)ta114tiheysfunktionaaliteoriamolekyylitDiatomic moleculeBond lengthDensity functional theoryLocal-density approximationapproksimointiExcitation
researchProduct

The two-fluid extended model of superfluid helium

2019

In this paper we perform the first numerical comparison between the two main existing models of superfluid helium: the two-fluid model proposed by Landau and the one-fluid extended model proposed from the extended thermodynamics. The numerical experiments in this paper regard the profiles of the so-called normal and superfluid components in 2D counterflow turbulence.

two-fluid modelcounterflow turbulencesuperfluid heliumextended thermodynamicSettore MAT/07 - Fisica Matematicaone-fluid extended model
researchProduct

Constant sign and nodal solutions for parametric anisotropic $(p, 2)$-equations

2021

We consider an anisotropic ▫$(p, 2)$▫-equation, with a parametric and superlinear reaction term.Weshow that for all small values of the parameter the problem has at least five nontrivial smooth solutions, four with constant sign and the fifth nodal (sign-changing). The proofs use tools from critical point theory, truncation and comparison techniques, and critical groups. Spletna objava: 9. 9. 2021. Abstract. Bibliografija: str. 1076.

udc:517.9electrorheological fluidsElectrorheological fluidMaximum principleMathematics - Analysis of PDEsSettore MAT/05 - Analisi MatematicaFOS: Mathematicsconstant sign and nodal solutionsAnisotropyanisotropic operators regularity theory maximum principle constant sign and nodal solutions critical groups variable exponent electrorheological fluidsParametric statisticsMathematicsvariable exponentVariable exponentApplied MathematicsMathematical analysisudc:517.956.2regularity theoryAnisotropic operatorsanisotropic operatorsTerm (time)Primary: 35J20 35J60 35J92 Secondary: 47J15 58E05maximum principleConstant (mathematics)critical groupsAnalysisAnalysis of PDEs (math.AP)Sign (mathematics)
researchProduct

L'Atlante dei Waterfront. Visioni, paradigmi, politiche e progetti per i waterfront siciliani e maltesi

2013

Il volume contiene gli esiti del P.O. Italia-Malta "Waterfront" dedicato alla rigenerazione dei waterfront, applicata a casi di studio siciliani e maltesi

urban regeneration waterfront fluid citySettore ICAR/21 - Urbanistica
researchProduct

Progettare città liquide

2021

Urban waterfronts are today one of the most prolific variants of augmented cities: fluid and hybrid places where resources, opportunities, aspirations and ambitions of cities are translated into visions, new relations and projects. The creative port city is capable of reactivating new fluid metabolism, generating new architectural forms and producing new landscapes. The permanent flows of urban culture, grounding on the waterfront, are capable to fuel huge relational networks, making cities more dynamic, communicative and competitive. The most important implication of waterfront regeneration is that this particular area should be addressed as a structural and strategic element of the city a…

urban regenerationfluid citycittàSettore ICAR/21 - Urbanisticawaterfront
researchProduct

Numerical Simulations of the Flow Field of a Submerged Hydraulic Jump over Triangular Macroroughnesses

2021

The submerged hydraulic jump is a sudden change from the supercritical to subcritical flow, specified by strong turbulence, air entrainment and energy loss. Despite recent studies, hydraulic jump characteristics in smooth and rough beds, the turbulence, the mean velocity and the flow patterns in the cavity region of a submerged hydraulic jump in the rough beds, especially in the case of triangular macroroughnesses, are not completely understood. The objective of this paper was to numerically investigate via the FLOW-3D model the effects of triangular macroroughnesses on the characteristics of submerged jump, including the longitudinal profile of streamlines, flow patterns in the cavity regi…

velocitylcsh:Hydraulic engineering010504 meteorology & atmospheric sciencesGeography Planning and Development0207 environmental engineering02 engineering and technologyAquatic Science01 natural sciencesBiochemistrySettore ICAR/01 - IdraulicaPhysics::Fluid Dynamicssymbols.namesakelcsh:Water supply for domestic and industrial purposeslcsh:TC1-978triangular macroroughnesseShear stressFroude numberStreamlines streaklines and pathlines020701 environmental engineeringHydraulic jump0105 earth and related environmental sciencesWater Science and Technologylcsh:TD201-500TKEbed shear stress coefficientFLOW-3D modelsubmerged hydraulic jumpTurbulenceMechanicsSupercritical flowTurbulence kinetic energyJumpsymbolsGeologytriangular macroroughnessesWater
researchProduct

Vertex corrections for positive-definite spectral functions of simple metals

2016

We present a systematic study of vertex corrections in the homogeneous electron gas at metallic densities. The vertex diagrams are built using a recently proposed positive-definite diagrammatic expansion for the spectral function. The vertex function not only provides corrections to the well known plasmon and particle-hole scatterings, but also gives rise to new physical processes such as generation of two plasmon excitations or the decay of the one-particle state into a two-particles-one-hole state. By an efficient Monte Carlo momentum integration we are able to show that the additional scattering channels are responsible for the bandwidth reduction observed in photoemission experiments on…

vertex correctionshomogeneous electron gasMonte Carlo methodFOS: Physical sciencesGeneral Physics and AstronomyPositive-definite matrixspectral function7. Clean energy01 natural sciences010305 fluids & plasmasSettore FIS/03 - Fisica della Materiasymbols.namesakePhysics and Astronomy (all)Condensed Matter - Strongly Correlated Electrons0103 physical sciencesVertex model010306 general physicsPlasmonPhysicsStrongly Correlated Electrons (cond-mat.str-el)ta114ScatteringFermi levelVertex functionQuantum electrodynamicssymbolsFermi gas
researchProduct

High-Reynolds-number turbulent cavity flow using the lattice Boltzmann method

2018

We present a boundary condition scheme for the lattice Boltzmann method that has significantly improved stability for modeling turbulent flows while maintaining excellent parallel scalability. Simulations of a three-dimensional lid-driven cavity flow are found to be stable up to the unprecedented Reynolds number $\mathrm{Re}=5\ifmmode\times\else\texttimes\fi{}{10}^{4}$ for this setup. Excellent agreement with energy balance equations, computational and experimental results are shown. We quantify rises in the production of turbulence and turbulent drag, and determine peak locations of turbulent production.

virtauslaskentaLattice Boltzmann methodsEnergy balance01 natural sciencesStability (probability)010305 fluids & plasmasPhysics::Fluid Dynamicssymbols.namesaketurbulenssi0103 physical sciencesBoundary value problem010306 general physicsPhysicsta114numeeriset menetelmätTurbulenceBoltzmann methodReynolds numberMechanicscavity flowSettore FIS/02 - Fisica Teorica Modelli e Metodi MatematiciDragsymbolsProduction (computer science)Computational fluid dynamics; Lattice Boltzmann Methods; Turbulent cavity flowsdifferentiaaliyhtälöt
researchProduct