Search results for "FT"
showing 10 items of 16187 documents
The BepiColombo MORE gravimetry and rotation experiments with the ORBIT14 software
2016
The BepiColombo mission to Mercury is an ESA/JAXA cornerstone mission, consisting of two spacecraft in orbit around Mercury addressing several scientific issues. One spacecraft is the Mercury Planetary Orbiter, with full instrumentation to perform radio science experiments. Very precise radio tracking from Earth, on-board accelerometer and optical measurements will provide large data sets. From these it will be possible to study the global gravity field of Mercury and its tidal variations, its rotation state and the orbit of its centre of mass. With the gravity field and rotation state, it is possible to constrain the internal structure of the planet. With the orbit of Mercury, it is possib…
Neocomian to early Aptian syn-rift evolution of the normal to oblique-rifted North Gabon Margin (Interior and N'Komi Basins).
2009
18 pages; International audience; The North Gabon coastal rift basins consist of a set of 130–150 long-segment asymmetrically tilted half grabens (Interior Basin) and 000–020 short-segment en échelon half grabens (N'Komi Basin) separated by 040–060 major transverse faults. Tectono-sedimentary analysis of field and subsurface data reveals the control exerted by extensional tectonism over continental sedimentation. During Berriasian to early Barremian times, uniform uniaxial 040–060 extension was responsible for the stretching of the brittle upper crust over a 100-km wide domain. During late Barremian–early Aptian times, the main locus of extension stepped westward resulting in severe end-rif…
Machine learning regression algorithms for biophysical parameter retrieval: Opportunities for Sentinel-2 and -3
2012
Abstract ESA's upcoming satellites Sentinel-2 (S2) and Sentinel-3 (S3) aim to ensure continuity for Landsat 5/7, SPOT-5, SPOT-Vegetation and Envisat MERIS observations by providing superspectral images of high spatial and temporal resolution. S2 and S3 will deliver near real-time operational products with a high accuracy for land monitoring. This unprecedented data availability leads to an urgent need for developing robust and accurate retrieval methods. Machine learning regression algorithms may be powerful candidates for the estimation of biophysical parameters from satellite reflectance measurements because of their ability to perform adaptive, nonlinear data fitting. By using data from …
Gravitational-wave Detection and Parameter Estimation for Accreting Black-hole Binaries and Their Electromagnetic Counterpart
2020
We study the impact of gas accretion on the orbital evolution of black-hole binaries initially at large separation in the band of the planned Laser Interferometer Space Antenna (LISA). We focus on two sources: (i)~stellar-origin black-hole binaries~(SOBHBs) that can migrate from the LISA band to the band of ground-based gravitational-wave observatories within weeks/months; and (ii) intermediate-mass black-hole binaries~(IMBHBs) in the LISA band only. Because of the large number of observable gravitational-wave cycles, the phase evolution of these systems needs to be modeled to great accuracy to avoid biasing the estimation of the source parameters. Accretion affects the gravitational-wave p…
Subarcsecond Location of IGR J17480-2446 with Rossi XTE
2012
On 2010 October 13, the X-ray astronomical satellite Rossi XTE, during the observation of the newly discovered accretion powered X-ray pulsar IGR J17480--2446, detected a lunar occultation of the source. From knowledge of lunar topography and Earth, Moon, and spacecraft ephemeris at the epoch of the event, we determined the source position with an accuracy of 40 mas (1{\sigma} c.l.), which is interesting, given the very poor imaging capabilities of RXTE (\sim 1\circ). For the first time, using a non-imaging X-ray observatory, the position of an X-ray source with a subarcsecond accuracy is derived, demonstrating the neat capabilities of a technique that can be fruitfully applied to current a…
Recent Advances in Techniques for Hyperspectral Image Processing
2009
International audience; Imaging spectroscopy, also known as hyperspectral imaging, has been transformed in less than thirty years from being a sparse research tool into a commodity product available to a broad user community. Currently, there is a need for standardized data processing techniques able to take into account the special properties of hyperspec- tral data. In this paper, we provide a seminal view on recent advances in techniques for hyperspectral image processing. Our main focus is on the design of techniques able to deal with the high-dimensional nature of the data, and to integrate the spa- tial and spectral information. Performance of the discussed techniques is evaluated in …
Statistical retrieval of atmospheric profiles with deep convolutional neural networks
2019
Abstract Infrared atmospheric sounders, such as IASI, provide an unprecedented source of information for atmosphere monitoring and weather forecasting. Sensors provide rich spectral information that allows retrieval of temperature and moisture profiles. From a statistical point of view, the challenge is immense: on the one hand, “underdetermination” is common place as regression needs to work on high dimensional input and output spaces; on the other hand, redundancy is present in all dimensions (spatial, spectral and temporal). On top of this, several noise sources are encountered in the data. In this paper, we present for the first time the use of convolutional neural networks for the retr…
Multi-phase classification by a least-squares support vector machine approach in tomography images of geological samples
2016
Abstract. Image processing of X-ray-computed polychromatic cone-beam micro-tomography (μXCT) data of geological samples mainly involves artefact reduction and phase segmentation. For the former, the main beam-hardening (BH) artefact is removed by applying a best-fit quadratic surface algorithm to a given image data set (reconstructed slice), which minimizes the BH offsets of the attenuation data points from that surface. A Matlab code for this approach is provided in the Appendix. The final BH-corrected image is extracted from the residual data or from the difference between the surface elevation values and the original grey-scale values. For the segmentation, we propose a novel least-squar…
FAME: Software for analysing rock microstructures
2016
Determination of rock microstructures leads to a better understanding of the formation and deformation of polycrystalline solids. Here, we present FAME (Fabric Analyser based Microstructure Evaluation), an easy-to-use MATLAB®-based software for processing datasets recorded by an automated fabric analyser microscope. FAME is provided as a MATLAB®-independent Windows® executable with an intuitive graphical user interface. Raw data from the fabric analyser microscope can be automatically loaded, filtered and cropped before analysis. Accurate and efficient rock microstructure analysis is based on an advanced user-controlled grain labelling algorithm. The preview and testing environments simplif…
First Results of Hyperspectral Scene Generation in Preparation of the Chime Imaging Spectrometer Mission
2021
End-To-End mission performance simulators (E2Es) are software tools developed to support satellite mission preparatory activities. For passive remote sensing missions, E2Es generate synthetic scenes simulating the interaction of the solar radiation between the atmosphere and the surface; therefore allowing the estimation of the mission performance before its launch. In this paper, we present the CHIME Scene Generator Module (SGM) as part of CHIME E2Es, with state-of-the-art parallelization and optimization that give a performance allowing to obtain a whole year of daily worldwide Top-Of-Atmosphere radiance images in a matter of hours. The CHIME SGM generates 100x200km hyperspectral scenes w…