Search results for "FUNCTIONAL GENOMICS"
showing 10 items of 68 documents
Functional Genomics in Wine Yeast: DNA Arrays and Next Generation Sequencing
2017
Since their very beginning, DNA array and next-generation sequencing technologies have been used with Saccharomyces cerevisiae cells. In the last 7 years, an increasing number of studies have focused on the study of wine strains and winemaking. The uncovering of the genomic features of these strains and expression profiles under the different stressful conditions that they have to deal with have contributed significantly to the knowledge of how this amazing microorganism can convert grape must into a drink that has enormously influenced mankind for 7000 years.This review presents a synopsis of DNA array and next-generation sequencing (NGS) technologies and focus mainly in their use in study…
Endometrial receptivity is affected in women with high circulating progesterone levels at the end of the follicular phase: a functional genomics anal…
2011
Elevated serum progesterone levels at the end of the follicular phase in controlled ovarian stimulation (COS) leads to a poorer ongoing pregnancy rate in IVF cycles due to reduced endometrial receptivity. The objective of this study was to use microarray technology to compare endometrial gene expression profiles at the window of implantation according to the levels of circulating progesterone.For this prospective cohort study, microarray data were obtained from endometrial biopsies from 12 young healthy oocyte donors undergoing COS with pituitary suppression by either gonadotrophin-releasing hormone (GnRH) agonists or antagonists, and recombinant FSH. On the day of recombinant chorionic gon…
Functional Genomics of 5-to 8-Cell Stage Human Embryos by Blastomere Single-Cell cDNA Analysis
2010
Blastomere fate and embryonic genome activation (EGA) during human embryonic development are unsolved areas of high scientific and clinical interest. Forty-nine blastomeres from 5- to 8-cell human embryos have been investigated following an efficient single-cell cDNA amplification protocol to provide a template for high-density microarray analysis. The previously described markers, characteristic of Inner Cell Mass (ICM) (n = 120), stemness (n = 190) and Trophectoderm (TE) (n = 45), were analyzed, and a housekeeping pattern of 46 genes was established. All the human blastomeres from the 5- to 8-cell stage embryo displayed a common gene expression pattern corresponding to ICM markers (e.g., …
miR-155 inhibition sensitizes CD4+ Th cells for TREG mediated suppression.
2009
BackgroundIn humans and mice naturally occurring CD4(+)CD25(+) regulatory T cells (nTregs) are a thymus-derived subset of T cells, crucial for the maintenance of peripheral tolerance by controlling not only potentially autoreactive T cells but virtually all cells of the adaptive and innate immune system. Recent work using Dicer-deficient mice irrevocably demonstrated the importance of miRNAs for nTreg cell-mediated tolerance.Principal findingsDNA-Microarray analyses of human as well as murine conventional CD4(+) Th cells and nTregs revealed a strong up-regulation of mature miR-155 (microRNA-155) upon activation in both populations. Studying miR-155 expression in FoxP3-deficient scurfy mice …
Regulon-Specific Control of Transcription Elongation across the Yeast Genome
2009
Transcription elongation by RNA polymerase II was often considered an invariant non-regulated process. However, genome-wide studies have shown that transcriptional pausing during elongation is a frequent phenomenon in tightly-regulated metazoan genes. Using a combination of ChIP-on-chip and genomic run-on approaches, we found that the proportion of transcriptionally active RNA polymerase II (active versus total) present throughout the yeast genome is characteristic of some functional gene classes, like those related to ribosomes and mitochondria. This proportion also responds to regulatory stimuli mediated by protein kinase A and, in relation to cytosolic ribosomal-protein genes, it is medi…
AAV vector-mediated overexpression of CB1 cannabinoid receptor in pyramidal neurons of the hippocampus protects against seizure-induced excitoxicity.
2010
The CB1 cannabinoid receptor is the most abundant G-protein coupled receptor in the brain and a key regulator of neuronal excitability. There is strong evidence that CB1 receptor on glutamatergic hippocampal neurons is beneficial to alleviate epileptiform seizures in mouse and man. Therefore, we hypothesized that experimentally increased CB1 gene dosage in principal neurons would have therapeutic effects in kainic acid (KA)-induced hippocampal pathogenesis. Here, we show that virus-mediated conditional overexpression of CB1 receptor in pyramidal and mossy cells of the hippocampus is neuroprotective and moderates convulsions in the acute KA seizure model in mice. We introduce a recombinant a…
sevenC
2018
Chromatin looping is an essential feature of eukaryotic genomes and can bring regulatory sequences, such as enhancers or transcription factor binding sites, in the close physical proximity of regulated target genes. This package uses protein binding signals from ChIP-seq and sequence motif information to predict chromatin looping events.
Computational annotation of genes differentially expressed along olive fruit development
2009
Abstract Background Olea europaea L. is a traditional tree crop of the Mediterranean basin with a worldwide economical high impact. Differently from other fruit tree species, little is known about the physiological and molecular basis of the olive fruit development and a few sequences of genes and gene products are available for olive in public databases. This study deals with the identification of large sets of differentially expressed genes in developing olive fruits and the subsequent computational annotation by means of different software. Results mRNA from fruits of the cv. Leccino sampled at three different stages [i.e., initial fruit set (stage 1), completed pit hardening (stage 2) a…
Defining the genomic signature of totipotency and pluripotency during early human development.
2013
The genetic mechanisms governing human pre-implantation embryo development and the in vitro counterparts, human embryonic stem cells (hESCs), still remain incomplete. Previous global genome studies demonstrated that totipotent blastomeres from day-3 human embryos and pluripotent inner cell masses (ICMs) from blastocysts, display unique and differing transcriptomes. Nevertheless, comparative gene expression analysis has revealed that no significant differences exist between hESCs derived from blastomeres versus those obtained from ICMs, suggesting that pluripotent hESCs involve a new developmental progression. To understand early human stages evolution, we developed an undifferentiation netw…
tappAS: a comprehensive computational framework for the analysis of the functional impact of differential splicing
2019
AbstractTraditionally, the functional analysis of gene expression data has used pathway and network enrichment algorithms. These methods are usually gene rather than transcript centric and hence fall short to unravel functional roles associated to posttranscriptional regulatory mechanisms such as Alternative Splicing (AS) and Alternative PolyAdenylation (APA), jointly referred here as Alternative Transcript Processing (AltTP). Moreover, short-read RNA-seq has serious limitations to resolve full-length transcripts, further complicating the study of isoform expression. Recent advances in long-read sequencing open exciting opportunities for studying isoform biology and function. However, there…