Search results for "Failure Analysis"

showing 10 items of 132 documents

Comparative evaluation of the swelling and degrees of cross-linking in three organic gel packings for SEC through some geometric parameters.

2003

Abstract The size exclusion chromatographic (SEC) behavior of five solvent/polymer systems in three organic column packings based on polystyrene/divinylbenzene (PS/DVB) copolymer, TSK-Gel H HR , μ-styragel and TSK-Gel H XL , has been compared. All the packings offer similar characteristics (pore size, particle size and efficiency) but some differences have been found when eluting the same systems. The different elution behavior observed in both polymeric gels has been analyzed in terms of their swelling and cross-linking degrees and of the fractal parameters. From the Universal Calibration plots, values of the chromatographic partition coefficient, K p , have been obtained and using some eq…

Materials scienceMacromolecular SubstancesSize-exclusion chromatographyBiophysicsAnalytical chemistryMolecular ConformationBiochemistryFractal dimensionchemistry.chemical_compoundMaterials TestingmedicineOrganic ChemicalsParticle SizeViscositySolvationDivinylbenzenePartition coefficientEquipment Failure AnalysisCross-Linking ReagentschemistryVolume fractionCalibrationChromatography GelParticle sizeSwellingmedicine.symptomGelsPorosityJournal of biochemical and biophysical methods
researchProduct

Formation and Rupture of Schottky Nanocontacts on ZnO Nanocolumns

2007

In this paper, the electrical transport and mechanical properties of Pt/ZnO Schottky nanocontacts have been studied simultaneously during the formation and rupture of the nanocontacts. By combining multidimensional conducting scanning force spectroscopy with appropriated data processing, the physical relevant parameters (the ideality factor, the Schottky barrier height, and the rupture voltage) are obtained. It has been found that the transport curves strongly depend on the loading force. For loading forces higher than a threshold value, the transport characteristics are similar to those of large-area Schottky contact, while below this threshold deviations from strictly thermionic emission …

Materials scienceMacromolecular SubstancesSurface PropertiesSchottky barrierMolecular ConformationBioengineeringNanotechnologyThermionic emissionElectrical resistivity and conductivityMaterials TestingElectrochemistryNanotechnologyGeneral Materials ScienceParticle SizeNanotubesCondensed matter physicsbusiness.industryMechanical EngineeringElectric ConductivityForce spectroscopySchottky diodeEquipment DesignGeneral ChemistryCondensed Matter PhysicsEquipment Failure AnalysisSemiconductorSemiconductorsNanoelectronicsNanodotZinc OxideCrystallizationbusinessMicroelectrodesNano Letters
researchProduct

Porous organic cage compounds as highly potent affinity materials for sensing by quartz crystal microbalances.

2012

Porosity makes powerful affinity materials for quartz crystal microbalances. The shape-persistent organic cages and pores create superior affinity systems to existing ones for direct tracing of aromatic solvent vapors. A shape and size selectivity for the analytes is observed. These organic cages can be processed to thin films with highly reproducible sensing properties.

Materials scienceMiniaturizationMechanical EngineeringMineralogyQuartz crystal microbalanceEquipment DesignMicro-Electrical-Mechanical SystemsHydrocarbons AromaticCondensed Matter::Soft Condensed MatterCrystalEquipment Failure AnalysisAromatic solventChemical engineeringMechanics of MaterialsSize selectivityPhysics::Atomic and Molecular ClustersGeneral Materials ScienceGasesPhysics::Chemical PhysicsThin filmOrganic ChemicalsPorosityQuartzPorosityAdvanced materials (Deerfield Beach, Fla.)
researchProduct

Octave-spanning ultraflat supercontinuum with soft-glass photonic crystal fibers

2009

We theoretically identify some photonic-crystal-fiber structures, made up of soft glass, that generate ultrawide (over an octave) and very smooth supercontinuum spectra when illuminated with femtosecond pulsed light. The design of the fiber geometry in order to reach a nearly ultraflattened normal dispersion behavior is crucial to accomplish the above goal. Our numerical simulations reveal that these supercontinuum sources show high stability and no significant changes are detected even for fairly large variations of the incident pulse. Ministerio de Ciencia e Innovación (TEC2008-05490) and Generalitat Valenciana (GV/2007/043).

Materials scienceNonlinear opticsPhysics::OpticsOctave (electronics)Sensitivity and SpecificityPulse propagation and temporal solitonsOpticsDispersion (optics)Computer SimulationSelf-phase modulationOptical FibersPhotonic crystalÓpticaPhotonsbusiness.industryFemtosecond phenomenaReproducibility of ResultsNonlinear opticsEquipment DesignModels TheoreticalAtomic and Molecular Physics and OpticsSupercontinuumEquipment Failure AnalysisFibersFemtosecondComputer-Aided DesignOptoelectronicsGlassCrystallizationbusinessPhotonic-crystal fiber
researchProduct

0.48Tb/s (12x40Gb/s) WDM transmission and high-quality thermo-optic switching in dielectric loaded plasmonics

2012

We demonstrate Wavelength Division Multiplexed (WDM)-enabled transmission of 480Gb/s aggregate data traffic (12x40Gb/s) as well as high-quality 1x2 thermo-optic tuning in Dielectric-Loaded Surface Plasmon Polariton Waveguides (DLSPPWs). The WDM transmission characteristics have been verified through BER measurements by exploiting the heterointegration of a 60 mu m-long straight DLSPPW on a Silicon-on-Insulator waveguide platform, showing error-free performance for six out of the twelve channels. High-quality thermo-optic tuning has been achieved by utilizing Cycloaliphatic-Acrylate-Polymer as an efficient thermo-optic polymer loading employed in a dual-resonator DLSPPW switching structure, …

Materials scienceON-CHIP02 engineering and technology01 natural sciencesOptical switchlaw.invention010309 opticsOpticslawWavelength-division multiplexing0103 physical sciencesGOLDPlasmonSCALEExtinction ratiobusiness.industryPhotonic integrated circuitCOMPONENTSTemperatureOptical DevicesSignal Processing Computer-AssistedEquipment DesignSurface Plasmon Resonance021001 nanoscience & nanotechnologySurface plasmon polaritonAtomic and Molecular Physics and OpticsNETWORKSEquipment Failure AnalysisTransmission (telecommunications)TelecommunicationsPOLARITON WAVE-GUIDES0210 nano-technologybusinessWaveguide
researchProduct

Low loss microstructured chalcogenide fibers for large non linear effects at 1995 nm

2010

International audience; Microstructured optical fibers (MOFs) are traditionally prepared using the stack and draw technique. In order to avoid the interfaces problems observed in chalcogenide glasses, we have developed a new casting method to prepare the chalcogenide preform. This method allows to reach optical losses around 0.4 dB/m at 1.55 µm and less than 0.05 dB/m in the mid IR. Various As(38)Se(62) chalcogenide microstructured fibers have been prepared in order to combine large non linear index of these glasses with the mode control offered by MOF structures. Small core fibers have been drawn to enhance the non linearities. In one of these, three Stokes order have been generated by Ram…

Materials scienceOptical fiberChalcogenide02 engineering and technology01 natural sciencesOCIS Codes : 060.2270 ; 060.2390 ; 060.4370 ; 160.2750 ; 060.4005law.invention010309 opticschemistry.chemical_compoundsymbols.namesakeOpticsStack (abstract data type)law0103 physical sciencesFiber Optic Technology[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]business.industryEquipment Design[CHIM.MATE]Chemical Sciences/Material chemistryMicrostructured optical fiber021001 nanoscience & nanotechnologyCastingAtomic and Molecular Physics and OpticsEquipment Failure AnalysisCore (optical fiber)Nonlinear Dynamicschemistry[ CHIM.MATE ] Chemical Sciences/Material chemistry[SPI.OPTI]Engineering Sciences [physics]/Optics / PhotonicsymbolsChalcogens[ SPI.OPTI ] Engineering Sciences [physics]/Optics / PhotonicGlass0210 nano-technologybusinessRaman scatteringPhotonic-crystal fiberOptics Express
researchProduct

Time-domain fiber laser hydrogen sensor.

2004

We report a novel scheme for a fiber-optic hydrogen sensor based on an erbium-doped fiber laser with a palladium-coated tapered fiber within the laser cavity. The tapered fiber acts as a hydrogen-sensing element. When the sensing element is exposed to a hydrogen atmosphere, its attenuation decreases, changing the cavity losses and leading to a modification of the laser transient. The hydrogen concentration is obtained by simple measurement of the buildup time of the laser. This technique translates the measurement of hydrogen concentration into the time domain, and it can be extended to many intensity-based fiber sensors. Relative variations in the buildup time of up to 55% at an increase o…

Materials scienceOptical fiberTransducersHydrogen sensorGraded-index fiberSensitivity and Specificitylaw.inventionPhotometryOpticsFiber Bragg gratinglawFiber laserDispersion-shifted fiberFiber Optic TechnologyOptical Fibersbusiness.industryLasersSpectrum AnalysisReproducibility of ResultsEquipment DesignLaserAtomic and Molecular Physics and OpticsEquipment Failure AnalysisFiber optic sensorbusinessHydrogenOptics letters
researchProduct

Fiber-pigtailed temperature sensors based on dielectric-loaded plasmonic waveguide-ring resonators.

2012

We demonstrate optical fiber-pigtailed temperature sensors based on dielectric-loaded surface plasmon-polariton waveguide-ring resonators (DLSPP-WRRs), whose transmission depends on the ambient temperature. The DLSPP-WRR-based temperature sensors represent polymer ridge waveguides (~1×1 µm(2) in cross section) forming 5-µm-radius rings coupled to straight waveguides fabricated by UV-lithography on a 50-nm-thick gold layer atop a 2.3-µm-thick CYTOP layer covering a Si wafer. A broadband light source is used to characterize the DLSPP-WRR wavelength-dependent transmission in the range of 1480-1600 nm and to select the DLSPP-WRR component for temperature sensing. In- and out-coupling single-mod…

Materials scienceOptical fiberbusiness.industrySurface plasmonTransducersEquipment DesignSurface Plasmon ResonanceAtomic and Molecular Physics and Opticslaw.inventionEquipment Failure AnalysisResonatorWavelengthOpticsFiber Bragg gratingFiber optic sensorlawThermographyWavelength-division multiplexingElectric ImpedanceOptoelectronicsFiber Optic TechnologyPhotonicsbusinessOptics express
researchProduct

Ionic Space-Charge Effects in Solid State Organic Photovoltaics

2010

The effect of mobile ions on the operation of donor-acceptor bilayer solar cells is studied. We demonstrate the large effect ions can have on the energetics of the solar cells, illustrated by (for instance) changing the output voltage of a cell in situ from 0.35 to 0.74 V. More importantly, it is shown ionic species do not obstruct the charge generating properties of the photovoltaic devices and ionic space charge can be used in situ to improve their efficiencies. The results obtained are explained by taking into account energetic changes at the donor-acceptor interface as well as built-in potentials, giving clear guidelines on how ionic species can offer many new and exciting functionaliti…

Materials scienceOrganic solar cellStatic ElectricityIonic bonding02 engineering and technology010402 general chemistry7. Clean energy01 natural sciencesIonElectric Power SuppliesSolar EnergyGeneral Materials ScienceOrganic ChemicalsIonsbusiness.industryBilayerPhotovoltaic systemfood and beveragesCharge (physics)Equipment Design021001 nanoscience & nanotechnologySpace charge0104 chemical sciencesEquipment Failure AnalysisSemiconductorsOptoelectronics0210 nano-technologybusinessVoltageACS Applied Materials & Interfaces
researchProduct

Study of the glow curves of TLD exposed to thermal neutrons.

2007

The glow curves of thermoluminescent dosimeters (TLD600, TLD700 and MCP), exposed to a mixed field of thermal neutrons and gamma photons are analysed. The fluence values of thermal neutrons used, comparable with those used in radiotherapy, allow one to define the reliability of the TLDs, in particular the most sensitive MCP, in this radiation field and to get information on the dose absorbed values. The glow curves obtained have been deconvoluted using general order kinetics and the observed differences for the different LET components have been analysed. In particular, the ratio of the n(0) parameter of two different peaks seems to allow to discriminate the different contributions of neutr…

Materials sciencePhotonHot TemperatureThermoluminescenceAstrophysics::High Energy Astrophysical PhenomenaPhysics::Medical PhysicsRadiation DosageThermoluminescenceFluenceSensitivity and SpecificityRadiation ProtectionDosimetryRadiology Nuclear Medicine and imagingNeutronComputer SimulationNeutron beamNeutronsRadiationDosimeterRadiological and Ultrasound Technologybusiness.industryPublic Health Environmental and Occupational HealthReproducibility of ResultsGeneral MedicineEquipment DesignModels TheoreticalSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Neutron temperatureEquipment Failure AnalysisComputer-Aided DesignThermoluminescent DosimetryThermoluminescent dosimeterAtomic physicsNuclear medicinebusinessBeam (structure)Radiation protection dosimetry
researchProduct