6533b7cffe1ef96bd1259ac6

RESEARCH PRODUCT

Formation and Rupture of Schottky Nanocontacts on ZnO Nanocolumns

B Pérez-garcíaJaime ColcheroVicente Muñoz-sanjoséJesús Zúñiga-pérezElisa Palacios-lidón

subject

Materials scienceMacromolecular SubstancesSurface PropertiesSchottky barrierMolecular ConformationBioengineeringNanotechnologyThermionic emissionElectrical resistivity and conductivityMaterials TestingElectrochemistryNanotechnologyGeneral Materials ScienceParticle SizeNanotubesCondensed matter physicsbusiness.industryMechanical EngineeringElectric ConductivityForce spectroscopySchottky diodeEquipment DesignGeneral ChemistryCondensed Matter PhysicsEquipment Failure AnalysisSemiconductorSemiconductorsNanoelectronicsNanodotZinc OxideCrystallizationbusinessMicroelectrodes

description

In this paper, the electrical transport and mechanical properties of Pt/ZnO Schottky nanocontacts have been studied simultaneously during the formation and rupture of the nanocontacts. By combining multidimensional conducting scanning force spectroscopy with appropriated data processing, the physical relevant parameters (the ideality factor, the Schottky barrier height, and the rupture voltage) are obtained. It has been found that the transport curves strongly depend on the loading force. For loading forces higher than a threshold value, the transport characteristics are similar to those of large-area Schottky contact, while below this threshold deviations from strictly thermionic emission are detected. Above the threshold, stable and reproducible Pt/ZnO nanocontacts with ideality factors of about 2 and Schottky barrier heights of around 0.45 eV have been obtained.

https://doi.org/10.1021/nl070238m