0000000000087903

AUTHOR

Elisa Palacios-lidón

0000-0002-0785-8566

Formation and Rupture of Schottky Nanocontacts on ZnO Nanocolumns

In this paper, the electrical transport and mechanical properties of Pt/ZnO Schottky nanocontacts have been studied simultaneously during the formation and rupture of the nanocontacts. By combining multidimensional conducting scanning force spectroscopy with appropriated data processing, the physical relevant parameters (the ideality factor, the Schottky barrier height, and the rupture voltage) are obtained. It has been found that the transport curves strongly depend on the loading force. For loading forces higher than a threshold value, the transport characteristics are similar to those of large-area Schottky contact, while below this threshold deviations from strictly thermionic emission …

research product

Nanogoniometry with scanning force microscopy: a model study of CdTe thin films.

In this paper scanning force microscopy is combined with simple but powerful data processing to determine quantitatively, on a sub-micrometer scale, the orientation of surface facets present on crystalline materials. A high-quality scanning force topography image is used to determine an angular histogram of the surface normal at each image point. In addition to the known method for the assignment of Miller indices to the facets appearing on the surface, a quantitative analysis is presented that allows the characterization of the relative population and morphological quality of each of these facets. Two different CdTe thin films are used as model systems to probe the capabilities of this met…

research product

Polarity Effects on ZnO Films Grown along the Nonpolar[112¯0]Direction

The surface electrical properties of ZnO thin films grown along the nonpolar $[11\overline{2}0]$ direction have been investigated by Kelvin probe microscopy on a nanometer scale. Two different charge domains, with a 75 meV work function difference, coexist within the ZnO surface, which is covered by rhombohedral pyramids whose sidewalls are shown to be ${10\overline{1}1}$-type planes. The presence and relative orientation of the two kinds of charge domains are explained in terms of the atomic arrangement at the ${10\overline{1}1}$ polar surfaces.

research product

Anisotropic chemical etching of semipolar \{10\bar {1}\bar {1}\}\mbox {/} \{10\bar {1}{+}1\} ZnO crystallographic planes: polarity versus dangling bonds

ZnO thin films grown by metal?organic vapor phase epitaxy along the nonpolar direction and exhibiting semipolar facets have been chemically etched with HCl. In order to get an insight into the influence of the ZnO wurtzite structure in the chemical reactivity of the material, Kelvin probe microscopy and convergent beam electron diffraction have been employed to unambiguously determine the absolute polarity of the facets, showing that facets are unstable upon etching in an HCl solution and transform into planes. In contrast, facets undergo homogeneous chemical etching perpendicular to the initial crystallographic plane. The observed etching behavior has been explained in terms of surface oxy…

research product