Search results for "Fast Fourier transform"
showing 10 items of 67 documents
Area-efficient FPGA-based FFT processor
2003
A novel architecture for computing the fast Fourier transform on programmable devices is presented. Main results indicate that the use of one CORDIC operator to perform the multiplication by all the ‘twiddle factors’ sequentially leads to an area saving up to 35% with respect to other cores.
Quasi-Newton approach to nonnegative image restorations
2000
Abstract Image restoration, or deblurring, is the process of attempting to correct for degradation in a recorded image. Typically the blurring system is assumed to be linear and spatially invariant, and fast Fourier transform (FFT) based schemes result in efficient computational image restoration methods. However, real images have properties that cannot always be handled by linear methods. In particular, an image consists of positive light intensities, and thus a nonnegativity constraint should be enforced. This constraint and other ways of incorporating a priori information have been suggested in various applications, and can lead to substantial improvements in the reconstructions. Neverth…
Fast algorithms for free-space diffraction patterns calculation
1999
Here we present a fast algorithm for Fresnel integral calculation. Some fast algorithms using the fast Fourier transform are analysed and their performance has been checked. These methods are of easy implementation, but are only valid for a specific range of distances. Fast algorithms based on the Fractional Fourier transform allow accurate evaluation of the Fresnel integral from object to Fraunhofer domain in a single step.
Wavelet-based efficient simulation of electromagnetic transients in a lightning protection system
2003
In this paper, a wavelet-based efficient simulation of electromagnetic transients in a lightning protection systems (LPS) is presented. The analysis of electromagnetic transients is carried out by employing the thin-wire electric field integral equation in frequency domain. In order to easily handle the boundary conditions of the integral equation, semiorthogonal compactly supported spline wavelets, constructed for the bounded interval [0,1], have been taken into account in expanding the unknown longitudinal currents. The integral equation is then solved by means of the Galerkin method. As a preprocessing stage, a discrete wavelet transform is used in order to efficiently compress the Fouri…
Application of wavelet analysis to acoustic emission pulses generated by partial discharges
2004
The subject matter of this paper refers to the improvement of the acoustic emission (AE) method when used for detection, measurement and location of partial discharges (PDs) in oil insulation systems of power appliances. The detailed subject matter refers to the issues connected with the application of modern methods of digital processing of signals obtained during technical high-power measurements. The paper presents the results of measurements and analyses of the AE pulses generated in setups making the modeling of basic PD forms that can occur in oil insulations possible. The research concentrated mainly on the following types of PDs: point-plane, multipoint-plane, multipoint-plane with …
Discrete Periodic Spline Wavelets and Wavelet Packets
2014
Similarly to periodic polynomial splines, existence of the set of embedded discrete periodic splines spaces \(\varPi [N]= \fancyscript{S}_{[0]}\supset {}^{2r} \fancyscript{S}_{[1]}\supset \cdots \supset {}^{2r} \fancyscript{S}_{[m]}\cdots \), combined with the DSHA provides flexible tools for design and implementation of wavelet and wavelet packet transforms. As in the polynomial case, all the calculations consist of fast direct and inverse Fourier transforms (FFT and IFFT, respectively) and simple arithmetic operations. Raising the splines order does not increase the computation complexity.
2D harmonic analysis of the cogging torque in synchronous permanent magnet machines
2004
Presents an approach to determine sources of cogging torque harmonics in permanent magnet electrical machines on the basis of variations of air‐gap magnetic flux density with time and space. The magnetic flux density is determined from the two‐dimensional (2D) finite element model and decomposed into the double Fourier series through the 2D fast Fourier transform (FFT). The real trigonometric form of the Fourier series is used for the purpose to identify those space and time harmonics of magnetic flux density whose involvement in the cogging torque is the greatest relative contribution. Carries out calculations for a symmetric permanent magnet brushless machine for several rotor eccentricit…
An induction motor speed measurement method based on current harmonic analysis with the Chirp-Z Transform
2005
This paper presents a new method to measure motor speed by means of frequency estimation of rotor slot spectral components in the supply current of squirrel single-cage induction motors. The novelty of the method consists in the harmonic analysis of the supply current by means of the chirp-Z transform (CZT). The advantages are improved accuracy due to better spectral resolution and resolvability. Moreover, a shorter observation window is required, thus reducing errors related to nonstationary current signals. The experimental results are presented to validate the proposed method and to make a comparison with a similar method based on the fast Fourier transform (FFT).
An induction motor speed measurement based on current harmonic analysis with Chirp-Z Transform
2002
The paper presents a new method to measure motor speed by means of frequency estimation of rotor slot harmonics present in the supply current of squirrel single cage induction motors. The novelty of the method is the use of Chirp-Z Transform as supply current harmonic analysis. The advantages are an improved spectral resolution and accuracy. Moreover a shorter sampling time window is required reducing errors related to not stationary current signal. Experimental results are presented to validate the proposed method and to perform a comparison with FFT based one.
Fiber laser mode locked through an evolutionary algorithm
2015
Mode locking of fiber lasers generally involves adjusting several control parameters, in connection with a wide range of accessible short-pulse dynamics. In this Letter, we experimentally demonstrate the ability of an evolutionary algorithm to prescribe a set of cavity parameters entailing specific self-starting mode locking. The prescribed parameters are applied to electrically driven polarization controllers, thus shaping the effective nonlinear transfer function at play within the fiber cavity. According to the specifications of the objective function used for the optimization procedure, various short-pulse regimes are obtained. Our versatile method represents an effective novel avenue f…