Search results for "Feature extraction"

showing 10 items of 275 documents

Influences of rhythm- and timbre-related musical features on characteristics of music-induced movement

2013

Music makes us move. Several factors can affect the characteristics of such movements, including individual factors or musical features. For this study, we investigated the effect of rhythm- and timbre-related musical features as well as tempo on movement characteristics. Sixty participants were presented with 30 musical stimuli representing different styles of popular music, and instructed to move along with the music. Optical motion capture was used to record participants’ movements. Subsequently, eight movement features and four rhythm- and timbre-related musical features were computationally extracted from the data, while the tempo was assessed in a perceptual experiment. A subsequent c…

lcsh:BF1-990musical feature extractionEmbodied music cognitionspectral fluxliikkeenkaappaus050105 experimental psychology03 medical and health sciences0302 clinical medicinePopular musicRhythmmotion capturedancePsychology0501 psychology and cognitive sciencesSet (psychology)music-induced movementGeneral PsychologyInduced movementOriginal ResearchCommunicationMovement (music)business.industrypulse clarity05 social scienceslcsh:PsychologyEmbodied cognitionta6131businessPsychologyTimbre030217 neurology & neurosurgeryFrontiers in Psychology
researchProduct

Performance Evaluation of EEG Based Mental Stress Assessment Approaches for Wearable Devices

2021

Mental stress has been identified as the root cause of various physical and psychological disorders. Therefore, it is crucial to conduct timely diagnosis and assessment considering the severe effects of mental stress. In contrast to other health-related wearable devices, wearable or portable devices for stress assessment have not been developed yet. A major requirement for the development of such a device is a time-efficient algorithm. This study investigates the performance of computer-aided approaches for mental stress assessment. Machine learning (ML) approaches are compared in terms of the time required for feature extraction and classification. After conducting tests on data for real-t…

machine learningreal timeArtificial Intelligencefeature extractionBiomedical Engineeringconvolutional neural networkNeurosciences. Biological psychiatry. Neuropsychiatrycomputer-aided diagnosis (CAD)stress-assessmentRC321-571Frontiers in Neurorobotics
researchProduct

Music mood annotation using semantic computing and machine learning

2015

mallintaminentägitmusic emotion recognitionverkkoyhteisötmusiikkiannotointisosiaalinen mediamusic mood annotationfeature selectionkoneoppiminentunteeteditorial tagssemantic computingaudio feature extractiondigitaalinen musiikkigenre-adaptivesocial tagslaskentamenetelmätcircumplex model
researchProduct

Altered EEG Oscillatory Brain Networks During Music-Listening in Major Depression

2021

To examine the electrophysiological underpinnings of the functional networks involved in music listening, previous approaches based on spatial independent component analysis (ICA) have recently been used to ongoing electroencephalography (EEG) and magnetoencephalography (MEG). However, those studies focused on healthy subjects, and failed to examine the group-level comparisons during music listening. Here, we combined group-level spatial Fourier ICA with acoustic feature extraction, to enable group comparisons in frequency-specific brain networks of musical feature processing. It was then applied to healthy subjects and subjects with major depressive disorder (MDD). The music-induced oscil…

masennusmedicine.medical_specialtyComputer Networks and Communicationsneural oscillationsFeature extractionmusiikkiAlpha (ethology)musiikkipsykologiaMajor depressive disordernaturalistic music listeningAudiologyElectroencephalographyDIAGNOSISbehavioral disciplines and activities050105 experimental psychology03 medical and health sciences0302 clinical medicineSIGNALSmedicine0501 psychology and cognitive sciencesEEGRESTING-STATE NETWORKSmajor depressive disorderINDEPENDENT COMPONENT ANALYSISONGOING EEGmedicine.diagnostic_testsignaalinkäsittely05 social sciences3112 Neuroscienceshermoverkot (biologia)signaalianalyysiFUNCTIONAL CONNECTIVITYADULTSGeneral MedicineMagnetoencephalographymedicine.diseasebrain networksIndependent component analysisongoing EEGhumanitiesElectrophysiologyindependent component analysisFMRI DATAFeature (computer vision)SYNCHRONIZATIONMajor depressive disorderPsychology030217 neurology & neurosurgeryRESPONSESInternational Journal of Neural Systems
researchProduct

Automated approach for indirect immunofluorescence images classification based on unsupervised clustering method

2018

Autoimmune diseases (ADs) are a collection of many complex disorders of unknown aetiology resulting in immune responses to self-antigens and are thought to result from interactions between genetic and environmental factors. ADs collectively are amongst the most prevalent diseases in the U.S., affecting at least 7% of the population. The diagnosis of ADs is very complex, the standard screening methods provides seeking and recognizing of Antinuclear Antibodies (ANA) by Indirect ImmunoFluorescence (IIF) based on HEp-2 cells. In this paper an automatic system able to identify and classify the Centromere pattern is presented. The method is based on the grouping of centromeres present on the cell…

medical disorderComputer sciencePopulationFeature extraction02 engineering and technologybiomedical optical imagingmedical image processing030218 nuclear medicine & medical imaging03 medical and health sciences0302 clinical medicineImage textureblood0202 electrical engineering electronic engineering information engineeringSegmentationimage texturecellular biophysicsCluster analysiseducationimage segmentationdiseaseeducation.field_of_studyIndirect immunofluorescenceContextual image classificationbusiness.industryfeature extractionPattern recognitionImage segmentationSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)020201 artificial intelligence & image processingfluorescenceComputer Vision and Pattern RecognitionArtificial intelligencebusinessSoftwareimage classificationIET Computer Vision
researchProduct

Identical fits of nonnegative matrix/tensor factorization may correspond to different extracted event-related potentials

2010

Nonnegative Matrix / Tensor factorization (NMF/NTF) have been used in the study of EEG, and the fit (explained variation) is often used to evaluate the performance of a nonnegative decomposition algorithm. However, this parameter only reveals the information derived from the mathematical model and just exhibits the reliability of the algorithms, and the property of EEG can not be reflected. If fits of two algorithms are identical, it is necessary to examine whether the desired components extracted by them are identical too. In order to verify this doubt, we performed NMF and NTF on the same dataset of an auditory event-related potentials (ERPs), and found that the identical fits of NMF and …

medicine.diagnostic_testComponent (thermodynamics)Property (programming)business.industryFeature extractionPattern recognitionElectroencephalographyMatrix decompositionNon-negative matrix factorizationTime–frequency analysismedicineArtificial intelligenceNonnegative matrixbusinessMathematicsThe 2010 International Joint Conference on Neural Networks (IJCNN)
researchProduct

Recognition of Cardiac Arrhythmia by Means of Beat Clustering on ECG-Holter Recordings

2012

The follow-up of some cardiac diseases may be achieved by ECG-holter record analysis. A heartbeat clustering method can be used to reduce the usually high computational cost of such Holter analysis. This study describes a method aimed at cardiac arrhythmia recognition based on this approach, by means of unsupervised inspection of morphologically similar heartbeat groups. Singular Value Decomposition (SVD) is used as the feature selection method since the complexity increases exponentially with the number of features. A modification of the k-means algorithm was developed for centroid computation, taking into account heartbeat length changes. Experimental set consisted of ECG records from the…

medicine.diagnostic_testHeartbeatComputer sciencebusiness.industryFeature extractionCentroidCardiac arrhythmiaFeature selectionPattern recognitionSingular value decompositioncardiovascular systemmedicineArtificial intelligenceCluster analysisbusinessElectrocardiographycirculatory and respiratory physiology
researchProduct

ECG Analysis for Ventricular Fibrillation Detection Using a Boltzmann Network

2015

Arrhythmias consist on electrical alterations in the heart beat control. They can be identified by means of surface ECG leads. The main goal of this work is to provide a signal classification based on ECG signal waveform in the time-frequency domain especially targeted to Ventricular Fibrillation detection. The use of a classifier based on a Boltzmann network is proposed. However, a previous signal preprocessing is also required so that the Boltzmann network is fed with the appropriate data. In this case, an R-wave detector is used; after that, the Pseudo Wigner-Ville time-frequency distribution is obtained. This distribution is used to train and test the network, which handles it as an ima…

medicine.medical_specialtybusiness.industryComputer scienceQuantitative Biology::Tissues and OrgansDetectorFeature extractionPattern recognitionmedicine.diseasesymbols.namesakeInternal medicineVentricular fibrillationBoltzmann constantmedicinesymbolsCardiologyPreprocessorECG analysisWaveformArtificial intelligencebusinessClassifier (UML)
researchProduct

An Integrated Method for Image Retrieval

1995

This paper presents an information fusion method for image retrieval; the retrieval strategy is based on statistical and geometrical features extracted from sub-images. Our goal is to find a set of best similar images related to a prototype image; this goal may be obtained according to image content rather than symbolic attributes. MRI (Magnetic Resonance Imaging) images and astronomical images have been adopted to test the method. Main steps of the procedure to retrieve images are: (l) Segmentation, (2) Matching, and (3) Decision. The first step involves four clusters co-operating segmentation algorithms; in the matching step, a sets of candidate similar images is provided; finally an info…

pictorial darabase feature extraction image segmentation information fusion.Settore INF/01 - Informatica
researchProduct

Kernel Feature Extraction Methods for Remote Sensing Data Analysis

2014

Technological advances in the last decades have improved our capabilities of collecting and storing high data volumes. However, this makes that in some fields, such as remote sensing several problems are generated in the data processing due to the peculiar characteristics of their data. High data volume, high dimensionality, heterogeneity and their nonlinearity, make that the analysis and extraction of relevant information from these images could be a bottleneck for many real applications. The research applying image processing and machine learning techniques along with feature extraction, allows the reduction of the data dimensionality while keeps the maximum information. Therefore, develo…

remote sensing:CIENCIAS DE LA TIERRA Y DEL ESPACIO::Otras especialidades de la tierra espacio o entorno [UNESCO]generative kernelsUNESCO::CIENCIAS DE LA TIERRA Y DEL ESPACIO::Otras especialidades de la tierra espacio o entornoregressioninvariancesfeature extraction methodsclusteringimage classification
researchProduct