Search results for "Feature transform"

showing 10 items of 23 documents

Copy–Move Forgery Detection by Matching Triangles of Keypoints

2015

Copy-move forgery is one of the most common types of tampering for digital images. Detection methods generally use block-matching approaches, which first divide the image into overlapping blocks and then extract and compare features to find similar ones, or point-based approaches, in which relevant keypoints are extracted and matched to each other to find similar areas. In this paper, we present a very novel hybrid approach, which compares triangles rather than blocks, or single points. Interest points are extracted from the image, and objects are modeled as a set of connected triangles built onto these points. Triangles are matched according to their shapes (inner angles), their content (c…

Settore ING-INF/05 - Sistemi Di Elaborazione Delle InformazioniComputer Networks and CommunicationsComputer scienceDelaunay triangulationbusiness.industryFeature vectorSURFFeature extractionScale-invariant feature transformPattern recognitionDelaunay TriangulationDigital Image ForensicVisualizationVertex (geometry)Copy-move ForgeryDigital imageComputer Networks and CommunicationHarriSIFTComputer visionArtificial intelligenceSafety Risk Reliability and QualitybusinessCopy-move Forgery; Delaunay Triangulation; Digital Image Forensics; Harris; SIFT; SURF; Computer Networks and Communications; Safety Risk Reliability and QualityTransformation geometryIEEE Transactions on Information Forensics and Security
researchProduct

Composition of SIFT features for robust image representation

2010

In this paper we propose a novel feature based on SIFT (Scale Invariant Feature Transform) algorithm1 for the robust representation of local visual contents. SIFT features have raised much interest for their power of description of visual content characterizing punctual information against variation of luminance and change of viewpoint and they are very useful to capture local information. For a single image hundreds of keypoints are found and they are particularly suitable for tasks dealing with image registration or image matching. In this work we stretched the spatial coverage of descriptors creating a novel feature as composition of keypoints present in an image region while maintaining…

Settore ING-INF/05 - Sistemi Di Elaborazione Delle InformazioniComputer sciencebusiness.industryComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONImage registrationScale-invariant feature transformartificial intelligenceLuminanceimage annotationImage (mathematics)bag of wordsFeature (computer vision)SIFTvisual termsComputer visionArtificial intelligenceAffine transformationbusinessRepresentation (mathematics)semanticsImage representationFeature detection (computer vision)
researchProduct

Exploiting Visual Saliency Algorithms for Object-Based Attention: A New Color and Scale-Based Approach

2017

Visual Saliency aims to detect the most important regions of an image from a perceptual point of view. More in detail, the goal of Visual Saliency is to build a Saliency Map revealing the salient subset of a given image by analyzing bottom-up and top-down factors of Visual Attention. In this paper we proposed a new method for Saliency detection based on colour and scale analysis, extending our previous work based on SIFT spatial density inspection. We conducted several experiments to study the relationships between saliency methods and the object attention processes and we collected experimental data by tracking the eye movements of thirty viewers in the first three seconds of observation o…

Settore ING-INF/05 - Sistemi Di Elaborazione Delle InformazioniComputer sciencebusiness.industrymedia_common.quotation_subject05 social sciencesComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONEye movementExperimental dataScale-invariant feature transformVisual saliency Object-based attention SIFT Fixation maps Dataset Eye trackingPattern recognition02 engineering and technology050105 experimental psychologySalientPerceptionFixation (visual)0202 electrical engineering electronic engineering information engineeringEye tracking020201 artificial intelligence & image processing0501 psychology and cognitive sciencesComputer visionArtificial intelligencebusinessObject-based attentionmedia_common
researchProduct

Is There Anything New to Say About SIFT Matching?

2020

SIFT is a classical hand-crafted, histogram-based descriptor that has deeply influenced research on image matching for more than a decade. In this paper, a critical review of the aspects that affect SIFT matching performance is carried out, and novel descriptor design strategies are introduced and individually evaluated. These encompass quantization, binarization and hierarchical cascade filtering as means to reduce data storage and increase matching efficiency, with no significant loss of accuracy. An original contextual matching strategy based on a symmetrical variant of the usual nearest-neighbor ratio is discussed as well, that can increase the discriminative power of any descriptor. Th…

Settore ING-INF/05 - Sistemi Di Elaborazione Delle InformazioniSettore INF/01 - Informaticabusiness.industryComputer scienceImage matchingComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONScale-invariant feature transformPattern recognition02 engineering and technologySIFT sGLOH2 Quantization Binary descriptors Symmetric matching Hierarchical cascade filtering Deep descriptors Keypoint patch orientation Approximated overlap errorDiscriminative modelArtificial IntelligenceHistogramComputer data storage0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingComputer Vision and Pattern RecognitionArtificial intelligenceSIFTsGLOH2quantizationbinary descriptorssymmetric matchinghierarchical cascade filteringdeep descriptorskeypoint patch orientationapproximated overlap errorbusinessQuantization (image processing)SoftwareInternational Journal of Computer Vision
researchProduct

Views selection for SIFT based object modeling and recognition

2016

In this paper we focus on automatically learning object models in the framework of keypoint based object recognition. The proposed method uses a collection of views of the objects to build the model. For each object the collection is composed of N×M views obtained rotating the object around its vertical and horizontal axis. As keypoint based object recognition using a complete set of views is computationally expensive, we focused on the definition of a selection method that creates, for each object, a subset of the initial views that visually summarize the characteristics of the object and should be suited for recognition. We select the views by determining maxima and minima of a function, …

Similarity (geometry)Computer science3D single-object recognitionComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONLearning objectScale-invariant feature transform02 engineering and technologySIFT0202 electrical engineering electronic engineering information engineeringMedia TechnologyComputer vision060201 languages & linguisticsObject RecognitionSettore ING-INF/05 - Sistemi Di Elaborazione Delle Informazionibusiness.industryFeature matchingCognitive neuroscience of visual object recognitionPattern recognition06 humanities and the artsObject (computer science)Object Modeling0602 languages and literatureSignal ProcessingObject model020201 artificial intelligence & image processingViola–Jones object detection frameworkArtificial intelligencebusiness
researchProduct

Automatic orientation and 3D modelling from markerless rock art imagery

2013

This paper investigates the use of two detectors and descriptors on image pyramids for automatic image orientation and generation of 3D models. The detectors and descriptors replace manual measurements and are used to detect, extract and match features across multiple imagery. The Scale-Invariant Feature Transform (SIFT) and the Speeded Up Robust Features (SURF) will be assessed based on speed, number of features, matched features, and precision in image and object space depending on the adopted hierarchical matching scheme. The influence of applying in addition Area Based Matching (ABM) with normalised cross-correlation (NCC) and least squares matching (LSM) is also investigated. The pipel…

Terrestrial laser scanningClose range imageryMatching (statistics)Computer scienceComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONScale-invariant feature transformBundle adjustmentAutomationOrientationBundle adjustmentMatchingComputer visionComputers in Earth SciencesEngineering (miscellaneous)Block (data storage)Ground truthOrientation (computer vision)business.industryPipeline (software)Atomic and Molecular Physics and OpticsComputer Science ApplicationsPhotogrammetryINGENIERIA CARTOGRAFICA GEODESIA Y FOTOGRAMETRIAArtificial intelligencebusinessISPRS Journal of Photogrammetry and Remote Sensing
researchProduct

Augmented Reality of the Middle Ear Combining Otoendoscopy and Temporal Bone Computed Tomography

2018

International audience; HYPOTHESIS:Augmented reality (AR) may enhance otologic procedures by providing sub-millimetric accuracy and allowing the unification of information in a single screen.BACKGROUND:Several issues related to otologic procedures can be addressed through an AR system by providing sub-millimetric precision, supplying a global view of the middle ear cleft, and advantageously unifying the information in a single screen. The AR system is obtained by combining otoendoscopy with temporal bone computer tomography (CT).METHODS:Four human temporal bone specimens were explored by high-resolution CT-scan and dynamic otoendoscopy with video recordings. The initialization of the system…

Video RecordingOptical flowEar MiddleScale-invariant feature transformInitialization03 medical and health sciencesImaging Three-Dimensional0302 clinical medicine[INFO.INFO-IM]Computer Science [cs]/Medical ImagingHumansMedicineComputer vision[SDV.MHEP.OS]Life Sciences [q-bio]/Human health and pathology/Sensory Organs030223 otorhinolaryngologybusiness.industryTemporal BoneEndoscopyFrame rateSensory SystemsRefresh rateOtorhinolaryngologyFeature (computer vision)030220 oncology & carcinogenesisAugmented realityNeurology (clinical)Artificial intelligenceTomographyTomography X-Ray ComputedbusinessOtology & Neurotology
researchProduct

Writer identification for historical handwritten documents using a single feature extraction method

2020

International audience; With the growth of artificial intelligence techniques the problem of writer identification from historical documents has gained increased interest. It consists on knowing the identity of writers of these documents. This paper introduces our baseline system for writer identification, tested on a large dataset of latin historical manuscripts used in the ICDAR 2019 competition. The proposed system yielded the best results using Scale Invariant Feature Transform (SIFT) as a single feature extraction method, without any preprocessing stage. The system was compared against four teams who participated in the competition with different feature extraction methods: SRS-LBP, SI…

Writer identificationComputer sciencebusiness.industryFeature extractionhistorical documentsScale-invariant feature transform020207 software engineeringPattern recognition02 engineering and technologyartificial intelligenceConvolutional neural networkSupport vector machineIdentification (information)sift descriptors0202 electrical engineering electronic engineering information engineeringIdentity (object-oriented programming)Unsupervised learning020201 artificial intelligence & image processing[INFO]Computer Science [cs]Artificial intelligencebusiness
researchProduct

An optimized algorithm of image stitching in the case of a multi-modal probe for monitoring the evolution of scars

2013

International audience; We propose a new system that makes possible to monitor the evolution of scars after the excision of a tumorous dermatosis. The hardware part of this system is composed of a new optical innovative probe with which two types of images can be acquired simultaneously: an anatomic image acquired under a white light and a functional one based on autofluorescence from the protoporphyrin within the cancer cells. For technical reasons related to the maximum size of the area covered by the probe, acquired images are too small to cover the whole scar. That is why a sequence of overlapping images is taken in order to cover the required area. The main goal of this paper is to des…

[ INFO.INFO-TS ] Computer Science [cs]/Signal and Image ProcessingMatching (graph theory)Panorama[INFO.INFO-TS] Computer Science [cs]/Signal and Image ProcessingComputer scienceComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONScale-invariant feature transform[ SPI.SIGNAL ] Engineering Sciences [physics]/Signal and Image processing02 engineering and technologyautofluorescence010501 environmental sciences01 natural sciencesImage stitching[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processingstitchingmulti-modal probe0202 electrical engineering electronic engineering information engineeringComputer visionProjection (set theory)[SPI.SIGNAL] Engineering Sciences [physics]/Signal and Image processing0105 earth and related environmental sciencesbusiness.industryFluorescenceScars evolutionmonitoringAutofluorescenceTransformation (function)020201 artificial intelligence & image processingArtificial intelligencebusiness[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processingAlgorithmSPIE Proceedings
researchProduct

Robust auto calibration technique for stereo camera

2017

Calibration of the internal and external parameters of a stereo vision camera is a well-known research problem in the computer vision. Usually, to get accurate 3D results the camera should be manually calibrate accurately as well. This paper proposes a robust approach to Auto Calibration stereo camera Without intervention of the user. There are several methods and techniques of calibration that have been proven, in this work we exploiting the geometric constraint, namely, the epipolar geometry. We specifically focuses to use 7 techniques for Features Extraction (SURF, BRISK, FAST, FREAK, MinEigen, MSERF, SIFT), however tries to establish the correspondences between points extracted in stere…

business.industryComputer scienceEpipolar geometryFeature extractionComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONScale-invariant feature transformRANSACStereopsisRobustness (computer science)Computer visionArtificial intelligenceFundamental matrix (computer vision)businessStereo camera2017 International Conference on Engineering & MIS (ICEMIS)
researchProduct