Search results for "Feature vector"
showing 10 items of 77 documents
Copy–Move Forgery Detection by Matching Triangles of Keypoints
2015
Copy-move forgery is one of the most common types of tampering for digital images. Detection methods generally use block-matching approaches, which first divide the image into overlapping blocks and then extract and compare features to find similar ones, or point-based approaches, in which relevant keypoints are extracted and matched to each other to find similar areas. In this paper, we present a very novel hybrid approach, which compares triangles rather than blocks, or single points. Interest points are extracted from the image, and objects are modeled as a set of connected triangles built onto these points. Triangles are matched according to their shapes (inner angles), their content (c…
New Similarity Rules for Mining Data
2006
Variability and noise in data-sets entries make hard the discover of important regularities among association rules in mining problems. The need exists for defining flexible and robust similarity measures between association rules. This paper introduces a new class of similarity functions, SF's, that can be used to discover properties in the feature space X and to perform their grouping with standard clustering techniques. Properties of the proposed SF's are investigated and experiments on simulated data-sets are also shown to evaluate the grouping performance.
Analysis of pattern recognition by man using detection experiments.
1981
This paper addresses the problem of analyzing biological pattern recognition systems. As no complete analysis is possible due to limited observability, the theoretical part of the paper examines some principles of construction for recognition systems. The relations between measurable and characteristic variables of these systems are described. The results of the study are: 1. Human recognition systems can always be described by a model consisting of an analyzer (FA) and a linear classifier. 2. The linearity of the classifier places no limits on the universal validity of the model. The principle of organization of such a system may be put into effect in many different ways. 3. The analyzer f…
Classification of SD-OCT volumes with multi pyramids, LBP and HOG descriptors: application to DME detections.
2016
This paper deals with the automated detection of Diabetic Macular Edema (DME) on Optical Coherence Tomography (OCT) volumes. Our method considers a generic classification pipeline with preprocessing for noise removal and flattening of each B-Scan. Features such as Histogram of Oriented Gradients (HOG) and Local Binary Patterns (LBP) are extracted and combined to create a set of different feature vectors which are fed to a linear-Support Vector Machines (SVM) Classifier. Experimental results show a promising sensitivity/specificity of 0.75/0.87 on a challenging dataset.
Diagnosis of inverter-fed induction motors in short time windows using physics-assisted deep learning framework
2019
This article presents a framework for accurate fault diagnostics in inverter-fed induction machinery operating under variable speed and load conditions within very short time windows. Condition indicators based on fault characteristic frequencies observed over the extended Park's vector modulus are fused with deep features extracted using stacked autoencoders to generate a multidimensional feature space for fault classification using support vector machine. The proposed approach is demonstrated in a laboratory setup to detect the most commonly occurring faults, namely, the stator turns fault, broken rotor bars fault and bearing fault with an accuracy > 98% within a short time window of 2–3 …
Experiments in Value Function Approximation with Sparse Support Vector Regression
2004
We present first experiments using Support Vector Regression as function approximator for an on-line, sarsa-like reinforcement learner. To overcome the batch nature of SVR two ideas are employed. The first is sparse greedy approximation: the data is projected onto the subspace spanned by only a small subset of the original data (in feature space). This subset can be built up in an on-line fashion. Second, we use the sparsified data to solve a reduced quadratic problem, where the number of variables is independent of the total number of training samples seen. The feasability of this approach is demonstrated on two common toy-problems.
A time domain triangle method approach to estimate actual evapotranspiration: Application in a Mediterranean region using MODIS and MSG-SEVIRI produc…
2016
Abstract In this study, spatially distributed estimates of regional actual evapotranspiration (ET) were obtained using a revised procedure of the so called “triangle method” to parameterize the Priestley–Taylor ϕ coefficient. In the procedure herein proposed, named Time-Domain Triangle Method (TDTM), the triangular feature space was parameterized considering pairs of T s –VI values obtained by exploring, for each pixel, only their temporal dynamics. This new method was developed using time series products provided by MODIS and MSG-SEVIRI sensors. Moreover the proposed procedure does not depend on ancillary data, and it is only based on remotely sensed vegetation indices and day–night time l…
Learning Similarity Scores by Using a Family of Distance Functions in Multiple Feature Spaces
2017
There exist a large number of distance functions that allow one to measure similarity between feature vectors and thus can be used for ranking purposes. When multiple representations of the same object are available, distances in each representation space may be combined to produce a single similarity score. In this paper, we present a method to build such a similarity ranking out of a family of distance functions. Unlike other approaches that aim to select the best distance function for a particular context, we use several distances and combine them in a convenient way. To this end, we adopt a classical similarity learning approach and face the problem as a standard supervised machine lea…
CheS-Mapper 2.0 for visual validation of (Q)SAR models
2014
Abstract Background Sound statistical validation is important to evaluate and compare the overall performance of (Q)SAR models. However, classical validation does not support the user in better understanding the properties of the model or the underlying data. Even though, a number of visualization tools for analyzing (Q)SAR information in small molecule datasets exist, integrated visualization methods that allow the investigation of model validation results are still lacking. Results We propose visual validation, as an approach for the graphical inspection of (Q)SAR model validation results. The approach applies the 3D viewer CheS-Mapper, an open-source application for the exploration of sm…
Hydro-Acoustic Target Detection
2014
This chapter presents an example of utilization of the discrete–time wavelet packets, which are described in Sect. 9.1, to classification of acoustic signals and detection of a target. The methodology based on wavelet packets is applied to a problem of detection of a boat of a certain type when other background noises are present. The solution is obtained via analysis of boat’s hydro-acoustic signature against an existing database of recorded and processed hydro-acoustic signals. The signals are characterized by the distribution of their energies among blocks of wavelet packet coefficients.