6533b822fe1ef96bd127d5d7

RESEARCH PRODUCT

Experiments in Value Function Approximation with Sparse Support Vector Regression

Tobias JungThomas Uthmann

subject

Support vector machineFunction approximationVariablesmedia_common.quotation_subjectFeature vectorReinforcement learningFunction (mathematics)AlgorithmSubspace topologyVector spaceMathematicsmedia_common

description

We present first experiments using Support Vector Regression as function approximator for an on-line, sarsa-like reinforcement learner. To overcome the batch nature of SVR two ideas are employed. The first is sparse greedy approximation: the data is projected onto the subspace spanned by only a small subset of the original data (in feature space). This subset can be built up in an on-line fashion. Second, we use the sparsified data to solve a reduced quadratic problem, where the number of variables is independent of the total number of training samples seen. The feasability of this approach is demonstrated on two common toy-problems.

https://doi.org/10.1007/978-3-540-30115-8_19