0000000000177876

AUTHOR

Tobias Jung

Evolution and Learning: Evolving Sensors in a Simple MDP Environment

Natural intelligence and autonomous agents face difficulties when acting in information-dense environments. Assailed by a multitude of stimuli they have to make sense of the inflow of information, filtering and processing what is necessary, but discarding that which is unimportant. This paper aims at investigating the interactions between evolution of the sensorial channel extracting the information from the environment and the simultaneous individual adaptation of agent-control. Our particular goal is to study the influence of learning on the evolution of sensors, with learning duration being the tunable parameter. A genetic algorithm governs the evolution of sensors appropriate for the a…

research product

Experiments in Value Function Approximation with Sparse Support Vector Regression

We present first experiments using Support Vector Regression as function approximator for an on-line, sarsa-like reinforcement learner. To overcome the batch nature of SVR two ideas are employed. The first is sparse greedy approximation: the data is projected onto the subspace spanned by only a small subset of the original data (in feature space). This subset can be built up in an on-line fashion. Second, we use the sparsified data to solve a reduced quadratic problem, where the number of variables is independent of the total number of training samples seen. The feasability of this approach is demonstrated on two common toy-problems.

research product

Sequential Learning with LS-SVM for Large-Scale Data Sets

We present a subspace-based variant of LS-SVMs (i.e. regularization networks) that sequentially processes the data and is hence especially suited for online learning tasks. The algorithm works by selecting from the data set a small subset of basis functions that is subsequently used to approximate the full kernel on arbitrary points. This subset is identified online from the data stream. We improve upon existing approaches (esp. the kernel recursive least squares algorithm) by proposing a new, supervised criterion for the selection of the relevant basis functions that takes into account the approximation error incurred from approximating the kernel as well as the reduction of the cost in th…

research product

Some Effects of Individual Learning on the Evolution of Sensors

In this paper, we present an abstract model of sensor evolution, where sensor development is only determined by artificial evolution and the adaptation of agent reactions is accomplished by individual learning. With the environment cast into a MDP framework, sensors can be conceived as a map from environmental states to agent observations and Reinforcement Learning algorithms can be utilised. On the basis of a simple gridworld scenario, we present some results of the interaction between individual learning and evolution of sensors.

research product