Search results for "Feedforward"

showing 10 items of 28 documents

Adaptive Feedforward Control of a Pressure Compensated Differential Cylinder

2020

This paper presents the design, simulation and experimental verification of adaptive feedforward motion control for a hydraulic differential cylinder. The proposed solution is implemented on a hydraulic loader crane. Based on common adaptation methods, a typical electro-hydraulic motion control system has been extended with a novel adaptive feedforward controller that has two separate feedforward states, i.e, one for each direction of motion. Simulations show convergence of the feedforward states, as well as 23% reduction in root mean square (RMS) cylinder position error compared to a fixed gain feedforward controller. The experiments show an even more pronounced advantage of the proposed c…

0209 industrial biotechnologyAdaptive controlFluid PowerComputer sciencemotion controlComputer Science::Neural and Evolutionary Computationhydraulicsdifferential cylinder02 engineering and technologyAdaptiv reguleringadaptive controllcsh:TechnologyRoot mean squarelcsh:Chemistry020901 industrial engineering & automationControl theoryConvergence (routing)feedforwardCylinderGeneral Materials ScienceVDP::Andre maskinfag: 579Instrumentationlcsh:QH301-705.5Fluid Flow and Transfer Processeslcsh:TProcess Chemistry and TechnologyGeneral EngineeringFeed forwardVDP::Other machinery sciences: 579021001 nanoscience & nanotechnologyMotion controllcsh:QC1-999BevegelsesstyringComputer Science Applicationslcsh:Biology (General)lcsh:QD1-999lcsh:TA1-2040Hydraulikk0210 nano-technologyReduction (mathematics)lcsh:Engineering (General). Civil engineering (General)lcsh:PhysicsApplied Sciences
researchProduct

Extreme Learning Machines for Data Classification Tuning by Improved Bat Algorithm

2018

Single hidden layer feed forward neural networks are widely used for various practical problems. However, the training process for determining synaptic weights of such neural networks can be computationally very expensive. In this paper we propose a new learning algorithm for learning the synaptic weights of the single hidden layer feedforward neural networks in order to reduce the learning time. We propose combining the upgraded bat algorithm with the extreme learning machine. The proposed approach reduces the number of evaluations needed to train a neural network and efficiently finds optimal input weights and the hidden biases. The proposed algorithm was tested on standard benchmark clas…

0209 industrial biotechnologyQuantitative Biology::Neurons and CognitionArtificial neural networkComputer sciencebusiness.industryData classificationProcess (computing)Approximation algorithm02 engineering and technologyMachine learningcomputer.software_genre020901 industrial engineering & automationGenetic algorithm0202 electrical engineering electronic engineering information engineeringBenchmark (computing)Feedforward neural network020201 artificial intelligence & image processingArtificial intelligencebusinesscomputerBat algorithm2018 International Joint Conference on Neural Networks (IJCNN)
researchProduct

Do Randomized Algorithms Improve the Efficiency of Minimal Learning Machine?

2020

Minimal Learning Machine (MLM) is a recently popularized supervised learning method, which is composed of distance-regression and multilateration steps. The computational complexity of MLM is dominated by the solution of an ordinary least-squares problem. Several different solvers can be applied to the resulting linear problem. In this paper, a thorough comparison of possible and recently proposed, especially randomized, algorithms is carried out for this problem with a representative set of regression datasets. In addition, we compare MLM with shallow and deep feedforward neural network models and study the effects of the number of observations and the number of features with a special dat…

0209 industrial biotechnologyrandom projectionlcsh:Computer engineering. Computer hardwareComputational complexity theoryComputer scienceRandom projectionlcsh:TK7885-789502 engineering and technologyMachine learningcomputer.software_genresupervised learningapproximate algorithmsSet (abstract data type)regressioanalyysi020901 industrial engineering & automationdistance–based regressionalgoritmit0202 electrical engineering electronic engineering information engineeringordinary least–squaresbusiness.industrySupervised learningsingular value decompositionminimal learning machineMultilaterationprojektioRandomized algorithmkoneoppiminenmachine learningScalabilityFeedforward neural network020201 artificial intelligence & image processingArtificial intelligenceapproksimointibusinesscomputerMachine Learning and Knowledge Extraction
researchProduct

Exploring directionality in spontaneous heart period and systolic pressure variability interactions in humans: implications in the evaluation of baro…

2004

Although in physiological conditions RR interval and systolic arterial pressure (SAP) are likely to interact in a closed loop, the traditional cross-spectral analysis cannot distinguish feedback (FB) from feedforward (FF) influences. In this study, a causal approach was applied for calculating the coherence from SAP to RR ( Ks-r) and from RR to SAP ( Kr-s) and the gain and phase of the baroreflex transfer function. The method was applied, compared with the noncausal one, to RR and SAP series taken from 15 healthy young subjects in the supine position and after passive head-up tilt. For the low frequency (0.04–0.15 Hz) spectral component, the enhanced FF coupling ( Kr-s = 0.59 ± 0.21, signi…

AdultMalemedicine.medical_specialtySympathetic Nervous SystemPhysiologyPeriod (gene)PostureRR intervalBlood PressureBaroreflexHeart RateTilt-Table TestCoherence and transfer functionFeedback and feedforward mechanismPhysiology (medical)Internal medicineHumansMedicineDirectionalityNonbaroreflex interactionFeedback Physiologicalbusiness.industryModels CardiovascularCardiovascular regulationHeartVagus NerveBaroreflexBlood pressureCirculatory systemCardiologySystolic arterial pressureFemaleCross-spectral analysiCardiology and Cardiovascular MedicinebusinessClosed loopAmerican Journal of Physiology-Heart and Circulatory Physiology
researchProduct

Efficient pruning of multilayer perceptrons using a fuzzy sigmoid activation function

2006

This Letter presents a simple and powerful pruning method for multilayer feed forward neural networks based on the fuzzy sigmoid activation function presented in [E. Soria, J. Martin, G. Camps, A. Serrano, J. Calpe, L. Gomez, A low-complexity fuzzy activation function for artificial neural networks, IEEE Trans. Neural Networks 14(6) (2003) 1576-1579]. Successful performance is obtained in standard function approximation and channel equalization problems. Pruning allows to reduce network complexity considerably, achieving a similar performance to that obtained by unpruned networks.

Artificial neural networkComputer sciencebusiness.industryTime delay neural networkCognitive NeuroscienceActivation functionRectifier (neural networks)PerceptronFuzzy logicComputer Science ApplicationsArtificial IntelligenceMultilayer perceptronFeedforward neural networkPruning (decision trees)Artificial intelligenceTypes of artificial neural networksbusinessNeurocomputing
researchProduct

A COMPARATIVE STUDY OF PHENOMENOLOGICAL MODELS OF MR BRAKE BASED ON NEURAL NETWORKS APPROACH

2013

In this paper a full-scale commercially available magnetorheological (MR) brake installed in a semi-active suspension (SAS) system is modeled and simulated. Two well-known phenomenological hysteresis models are explored: Bouc–Wen and Dahl ones. In particular, influence of their parameters on the response is evaluated and assessed. The next step is to introduce the artificial neural networks and discuss their application in the field of systems identification. Subsequently, two feedforward neural networks are created and trained to estimate parameters characterizing each of the MR damper models described. The semi-active suspension (SAS) system equipped with a MR brake is described and the …

Artificial neural networkMathematical modelComputer scienceControl theoryApplied MathematicsSignal ProcessingBrakeReference data (financial markets)Magnetorheological fluidExperimental dataFeedforward neural networkInformation SystemsDamperInternational Journal of Wavelets, Multiresolution and Information Processing
researchProduct

Optimal Pruned K-Nearest Neighbors: OP-KNN Application to Financial Modeling

2008

The paper proposes a methodology called OP-KNN, which builds a one hidden-layer feed forward neural network, using nearest neighbors neurons with extremely small computational time. The main strategy is to select the most relevant variables beforehand, then to build the model using KNN kernels. Multi-response sparse regression (MRSR) is used as the second step in order to rank each k-th nearest neighbor and finally as a third step leave-one-out estimation is used to select the number of neighbors and to estimate the generalization performances. This new methodology is tested on a toy example and is applied to financial modeling.

Artificial neural networkRank (linear algebra)GeneralizationComputer scienceKernel (statistics)Financial modelingFeedforward neural networkRegression analysisData miningcomputer.software_genrecomputerk-nearest neighbors algorithm2008 Eighth International Conference on Hybrid Intelligent Systems
researchProduct

A Multi-layer Feed Forward Neural Network Approach for Diagnosing Diabetes

2018

Diabetes is one of the worlds major health problems according to the World Health Organization. Recent surveys indicate that there is an increase in the number of diabetic patients resulting in an increase in serious complications such as heart attacks and deaths. Early diagnosis of diabetes, particularly of type 2 diabetes, is critical since it is vital for patients to get insulin treatments. However, diagnoses could be difficult especially in areas with few medical doctors. It is, therefore, a need for practical methods for the public for early detection and prevention with minimal intervention from medical professionals. A promising method for automated diagnosis is the use of artificial…

Artificial neural networkbusiness.industryComputer science02 engineering and technologyType 2 diabetes030204 cardiovascular system & hematologymedicine.diseaseMachine learningcomputer.software_genreMissing dataData set03 medical and health sciences0302 clinical medicineIntervention (counseling)Diabetes mellitus0202 electrical engineering electronic engineering information engineeringmedicineFeedforward neural network020201 artificial intelligence & image processingArtificial intelligenceMedical diagnosisbusinesscomputer2018 11th International Conference on Developments in eSystems Engineering (DeSE)
researchProduct

Efficient MLP Digital Implementation on FPGA

2005

The efficiency and the accuracy of a digital feed-forward neural networks must be optimized to obtain both high classification rate and minimum area on chip. In this paper an efficient MLP digital implementation. The key features of the hardware implementation are the virtual neuron based architecture and the use of the sinusoidal activation function for the hidden layer. The effectiveness of the proposed solutions has been evaluated developing different FPGA based neural prototypes for the High Energy Physics domain and the automatic Road Sign Recognition domain. The use of the sinusoidal activation function decreases hardware resource employment of about 32% when compared with the standar…

Artificial neural networkbusiness.industryComputer scienceActivation functionField programmable gate arrays (FPGA)Sigmoid functionartificial neuralMachine learningcomputer.software_genreTransfer functionDomain (software engineering)Feedforward neural networkSystem on a chipArtificial intelligencebusinessField-programmable gate arraycomputerComputer hardwareNeural networks
researchProduct

A Feed-Forward Neural Network for Robust Segmentation of Color Images

1999

A novel approach for segmentation of color images is proposed. The approach is based on a feed-forward neural network that learns to recognize the hue range of meaningful objects. Experimental results showed that the proposed method is effective and robust even in presence of changing environmental conditions. The described technique has been tested in the framework of the Robot Soccer World Cup Initiative (RoboCup). The approach is fully general and it may be successfully employed in any intermediate level image-processing task, where the color is a meaningful descriptor.

Artificial neural networkbusiness.industryComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONMobile robotTask (project management)Range (mathematics)GeographyFeedforward neural networkRobotComputer visionSegmentationArtificial intelligencebusinessHue
researchProduct