Search results for "Ferromagnetism"

showing 10 items of 940 documents

Electronic structure and magnetic order in Cu Zn(1−)O: A study GGA and GGA + U

2019

Abstract Based on density functional theory within GGA formalism, first-principles calculations were performed in order to study the structural, electronic, and magnetic properties of Cu-doped ZnO compound with dopant concentrations x = 0.028, 0.042, 0.056, and 0.125. It was found that CuxZn(1−x)O is ferromagnetic for both the closest and farthest impurity distances, but it is more stable energetically for the closest one. For all concentrations we obtained nearly half − metallic behavior. The calculations show that two substitutional Cu atoms introduce a magnetic moment of about 2.0 μB for all dopant concentrations. The results indicate that the magnetic ground state originates from the st…

010302 applied physicsMaterials scienceCondensed matter physicsDopantMagnetic momentSpins02 engineering and technologyElectronic structure021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesElectronic Optical and Magnetic MaterialsCondensed Matter::Materials ScienceFerromagnetismImpurity0103 physical sciencesCondensed Matter::Strongly Correlated ElectronsDensity functional theoryElectrical and Electronic Engineering0210 nano-technologyGround statePhysica B: Condensed Matter
researchProduct

Quasi-antiferromagnetic multilayer stacks with 90 degree coupling mediated by thin Fe oxide spacers

2019

We fabricated quasiantiferromagnetic (quasi-AFM) layers with alternating antiparallel magnetization in the neighboring domains via 90° magnetic coupling through an Fe-O layer. We investigated the magnetic properties and the relationship between the magnetic domain size and the 90° magnetic coupling via experiments and calculations. Two types of samples with a Ru buffer and a (Ni80Fe20)Cr40 buffer were prepared, and we found that with the NiFeCr buffer, the sample has a flatter Fe-O layer, leading to stronger 90° magnetic coupling and a smaller domain size compared with the Ru buffer sample. This trend is well explained by the bilinear and biquadratic coupling coefficients, A12 and B12, in L…

010302 applied physicsMaterials scienceCondensed matter physicsMagnetic domainAtomic force microscopy530 PhysicsOxideGeneral Physics and Astronomy02 engineering and technology021001 nanoscience & nanotechnology530 Physik01 natural sciencesInductive couplingBuffer (optical fiber)Magnetizationchemistry.chemical_compoundchemistry0103 physical sciencesAntiferromagnetism0210 nano-technologyAntiparallel (electronics)
researchProduct

Impact of Annealing Temperature on Tunneling Magnetoresistance Multilayer Stacks

2020

The effect of annealing temperatures on the tunnel magnetoresistance (TMR) of MgO-based magnetic tunnel junctions (MTJs) has been investigated for annealing between 190 and 370°C. The TMR shows a maximum value of 215% at an annealing temperature of 330°C. A strong sensitivity of the TMR and the exchange bias of the pinned ferromagnetic layers on the annealing temperature are observed. Depending on sensor application requirements, the MTJ can be optimized either for stability and pinning strength or for a high TMR signal by choosing the appropriate annealing temperature. The switching mechanism of the ferromagnetic layers in the MTJ and the influence of the annealing on the layer properties,…

010302 applied physicsMaterials scienceCondensed matter physicsMagnetoresistanceAnnealing (metallurgy)02 engineering and technologyCondensed Matter::Mesoscopic Systems and Quantum Hall Effect021001 nanoscience & nanotechnology01 natural sciencesElectronic Optical and Magnetic MaterialsCondensed Matter::Materials ScienceTunnel magnetoresistanceExchange biasFerromagnetismCondensed Matter::Superconductivity0103 physical sciences0210 nano-technologyQuantum tunnellingIEEE Magnetics Letters
researchProduct

Tetragonal Heusler Compounds for Spintronics

2013

With respect to the requirements of spin torque transfer (STT) materials, one the most promising materials families are the tunable tetragonal Heusler compounds based on Mn2YZ (Y=Co,Fe,Ni,Rh,...; Z=Al, Ga, Sn). They form the inverse cubic Heusler structure with three distinct magnetic sublattices, which allows a fine tuning of the magnetic properties. Starting with the stoichiometric Mn3Ga compound, we explored the complete phase diagram of Mn3-xYxZ (Y=Co, Fe, Ni and Z=Ga ). All series exhibit thermally stable magnetic properties. As we demonstrate, Mn3-xFexGa series, which are tetragonal over the whole range of compositions, are good as hard magnets, whereas magnetically more weak Mn3-xNix…

010302 applied physicsMaterials scienceCondensed matter physicsSpintronicsSpin-transfer torque02 engineering and technologyCrystal structure021001 nanoscience & nanotechnology01 natural sciencesElectronic Optical and Magnetic MaterialsTetragonal crystal systemFerromagnetismMagnet0103 physical sciencesElectrical and Electronic Engineering0210 nano-technologyStoichiometryPhase diagramIEEE Transactions on Magnetics
researchProduct

Tuning the electronic and magnetic properties of 2D g-GaN by H adsorption: An ab-initio study

2019

Abstract We have theoretically studied the structural, electronic and magnetic properties of the hydrogen adsorption on a honeycomb gallium-nitride two-dimensional monolayer (2D g-GaN). Results indicate that the band gap energy can be systematically tuned by the hydrogen coverage on the 2D g-GaN in the diluted limit. In addition, a total magnetic moment can be induced in the 2D g-GaN by hydrogen adsorption due to s-p interaction and band structure effects. Although hydrogen adsorption on top of nitrogen atoms shows the most stable energy in the 2D g-GaN, the most stable ferromagnetism -with a nonzero magnetic moment-is obtained when hydrogen is adsorbed on top of Ga atoms. These results ind…

010302 applied physicsMaterials scienceHydrogenSpintronicsMagnetic momentBand gapAb initiochemistry.chemical_element02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesElectronic Optical and Magnetic MaterialsAdsorptionchemistryFerromagnetismChemical physics0103 physical sciencesElectrical and Electronic Engineering0210 nano-technologyElectronic band structurePhysica B: Condensed Matter
researchProduct

Impact of the interplay of piezoelectric strain and current-induced heating on the field-like spin–orbit torque in perpendicularly magnetized Ta/Co20…

2021

Spin–orbit torques (SOTs) are known to be the most efficient way to manipulate the magnetization direction by electrical currents. While, conventionally, one symmetry component of the SOTs, namely, the damping-like torque, was considered to play a primary role, recently, the significance of the other component, the field-like torque, has been revised, owing to the non-trivial dynamics it can induce in heavy metal/ferromagnet multilayers. In this work, we first discuss the unusual behavior of the field-like SOT in a Ta/CoFeB/Ta/MgO multilayer system with a reduced magnetic anisotropy and demonstrate an energy-efficient approach to manipulate the magnitude of the SOT effective fields. Finally…

010302 applied physicsMaterials sciencePhysics and Astronomy (miscellaneous)Field (physics)Condensed matter physicsSpintronics02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesPiezoelectricitySymmetry (physics)Condensed Matter::Materials ScienceMagnetizationMagnetic anisotropyFerromagnetism0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics0210 nano-technologyAnisotropyApplied Physics Letters
researchProduct

Antiferromagnetic NiO thickness dependent sign of the spin Hall magnetoresistance in γ-Fe 2 O 3 /NiO/Pt epitaxial stacks

2019

We study the spin Hall magnetoresistance (SMR) in epitaxial γ–Fe2O3/NiO(001)/Pt stacks, as a function of temperature and thickness of the antiferromagnetic insulating NiO layer. Upon increasing the thickness of NiO from 0 nm to 10 nm, we detect a sign change of the SMR in the temperature range between 10 K and 280 K. This temperature dependence of the SMR in our stacks is different compared to that of previously studied yttrium iron garnet/NiO/Pt, as we do not find any peak or sign change as a function of temperature. We explain our data by a combination of spin current reflection from both the NiO/Pt and γ-Fe2O3/NiO interfaces and the thickness-dependent exchange coupling mode between the …

010302 applied physicsMaterials sciencePhysics and Astronomy (miscellaneous)MagnetoresistanceCondensed matter physicsNon-blocking I/OYttrium iron garnet02 engineering and technologyAtmospheric temperature range021001 nanoscience & nanotechnologyEpitaxy01 natural scienceschemistry.chemical_compoundReflection (mathematics)chemistry0103 physical sciencesAntiferromagnetism0210 nano-technologySpin (physics)Applied Physics Letters
researchProduct

2019

We systematically study the pump-wavelength dependence of terahertz pulse generation in thin-film spintronic THz emitters composed of a ferromagnetic CoFeB layer between adjacent nonmagnetic W and Pt layers. We find that the efficiency of THz generation is essentially flat for excitation by 150 fs pulses with center wavelengths ranging from 900 to 1500 nm, demonstrating that the spin current does not depend strongly on the pump photon energy. We show that the inclusion of dielectric overlayers of TiO2 and SiO2, designed for a particular excitation wavelength, can enhance the terahertz emission by a factor of up to two in field.

010302 applied physicsMaterials sciencePhysics and Astronomy (miscellaneous)SpintronicsField (physics)business.industryTerahertz radiationPhysics::Optics02 engineering and technologyDielectricPhoton energy021001 nanoscience & nanotechnology01 natural sciencesCondensed Matter::Materials ScienceWavelengthFerromagnetism0103 physical sciencesOptoelectronics0210 nano-technologybusinessExcitationApplied Physics Letters
researchProduct

Strain detection in non-magnetic steel by Kerr-microscopy of magnetic tracer layers

2018

Abstract For many applications of steel, e.g. for the evaluation of the fatigue state of components or structures, the characterization of the microscopic strain distribution in the material is important. We present a proof-of-principle for the visualization of such strain distributions by Kerr-microscopy of ferromagnetic tracer layers on nonmagnetic steel sheets. The influence of indentation induced strain on the magnetic domain pattern of 20 nm Galfenol and Permalloy tracer layers on austenitic AISI 904L steel sheets was investigated. The obtained Kerr-microscopy images show a characteristic domain pattern in the strained regions of the steel sheets, which is consistent with a dominant ma…

010302 applied physicsPermalloyAusteniteMaterials scienceStrain (chemistry)Magnetic domainPattern formation02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesElectronic Optical and Magnetic MaterialsFerromagnetismIndentation0103 physical sciencesComposite material0210 nano-technologyGalfenolJournal of Magnetism and Magnetic Materials
researchProduct

Effect of nanostructure layout on spin pumping phenomena in antiferromagnet/nonmagnetic metal/ferromagnet multilayered stacks

2017

In this work we focus on magnetic relaxation in Mn80Ir20(12 nm)/Cu(6 nm)/Py(dF) antiferromagnet/Cu/ferromagnet (AFM/Cu/FM) multilayers with different thickness of the ferromagnetic permalloy layer. An effective FM-AFM interaction mediated via the conduction electrons in the nonmagnetic Cu spacer – the spin-pumping effect – is detected as an increase in the linewidth of the ferromagnetic resonance (FMR) spectra and a shift of the resonant magnetic field. We further find experimentally that the spin-pumping-induced contribution to the linewidth is inversely proportional to the thickness of the Py layer. We show that this thickness dependence likely originates from the dissipative dynamics of …

010302 applied physicsPermalloySpin pumpingMaterials scienceCondensed matter physicsSpintronicsGeneral Physics and Astronomy01 natural sciencesFerromagnetic resonancelcsh:QC1-999Magnetic fieldCondensed Matter::Materials ScienceLaser linewidthFerromagnetism0103 physical sciencesAntiferromagnetismCondensed Matter::Strongly Correlated Electrons010306 general physicslcsh:PhysicsAIP Advances
researchProduct