Search results for "Films"

showing 10 items of 2839 documents

Determining Factors for the Unfolding Pathway of Peptides, Peptoids, and Peptidic Foldamers.

2016

We present a study of the mechanical unfolding pathway of five different oligomers (α-peptide, β-peptide, δ-aromatic-peptides, α/γ-peptides, and β-peptoids), adopting stable helix conformations. Using force-probe molecular dynamics, we identify the determining structural factors for the unfolding pathways and reveal the interplay between the hydrogen bond strength and the backbone rigidity in the stabilization of their helix conformations. On the basis of their behavior, we classify the oligomers in four groups and deduce a set of rules for the prediction of the unfolding pathways of small foldamers.

010405 organic chemistryStereochemistryHydrogen bondChemistry010402 general chemistry01 natural sciences0104 chemical sciencesSurfaces Coatings and FilmsMolecular dynamicsCrystallographyRigidity (electromagnetism)HelixMaterials ChemistryPhysical and Theoretical ChemistryThe journal of physical chemistry. B
researchProduct

Helical supramolecular polymerization of C3-symmetric amides and retroamides: on the origin of cooperativity and handedness.

2016

The cooperative supramolecular polymerization of 1 and 2 yields P- or M-type helical aggregates depending on the absolute configuration (S or R) of the stereogenic centres attached to the side chains. The connectivity of the amide group does not affect the handedness of the helical aggregates, but determines a larger cooperativity for retroamides 1.

010405 organic chemistryStereochemistryMetals and AlloysSupramolecular chemistryAbsolute configurationCooperativityGeneral Chemistry010402 general chemistry01 natural sciencesCatalysis0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsStereocenterchemistry.chemical_compoundCrystallographychemistryPolymerizationAmideMaterials ChemistryCeramics and CompositesSide chainChemical communications (Cambridge, England)
researchProduct

Does silica concentration and phytolith ultrastructure relate to phytolith hardness?

2017

Abstract Grasses are an important part of the forage of many herbivorous mammals and their phytoliths have long been regarded as the most important agent of tooth wear. Recent work has challenged this “paradigm” in finding evidence 1. of native phytoliths to be much softer then tooth enamel and 2. indicating, that phytolith hardness is highly variable, 3. prone to methodology and 4. not easy to be related to habitat conditions. We conduct controlled silica-cultivations measuring SiO2 content in the common forage grass Themeda triandra. Phytoliths are extracted natively, and nano-indentation values are measured. Phytolith hardness in Themeda triandra is found to be independent of silicate av…

0106 biological sciences0301 basic medicinelcsh:BiotechnologyBiomedical EngineeringBiophysicsPhytolithMaterial propertyForage010603 evolutionary biology01 natural sciencesBiomaterialslcsh:Biochemistry03 medical and health scienceschemistry.chemical_compoundlcsh:TP248.13-248.65Botanymedicinelcsh:QD415-436biologyMechanical EngineeringTooth wearThemeda triandrabiology.organism_classificationTooth enamelSilicateSurfaces Coatings and Films030104 developmental biologymedicine.anatomical_structurechemistryPhytolithUltrastructureUltrastructureSilicate availabilityHordeum vulgareIndentationBiosurface and Biotribology
researchProduct

Nitrogen removal from on-site treated anaerobic effluents using intermittently aerated moving bed biofilm reactors at low temperatures

2005

Abstract On-site post-treatment of anaerobically pre-treated dairy parlour wastewater (DPWW e ; 10 °C) and mixture of kitchen waste and black water (BWKW e ; 20 °C) was studied in moving bed biofilm reactors (MBBR). The focus was on removal of nitrogen and of residual chemical oxygen demand (COD). Moreover, the effect of intermittent aeration and continuous vs. sequencing batch operation was studied. All MBBRs removed 50–60% of nitrogen and 40–70% of total COD (COD t ). Complete nitrification was achieved, but denitrification was restricted by lack of carbon. Nitrogen removal was achieved in a single reactor by applying intermittent aeration. Continuous and sequencing batch operation provid…

0106 biological sciencesBiochemical oxygen demandEnvironmental EngineeringDenitrificationNitrogen010501 environmental sciences01 natural sciencesBioreactors010608 biotechnologyBioreactorWaste Management and Disposal0105 earth and related environmental sciencesWater Science and TechnologyCivil and Structural EngineeringWaste managementChemistryMoving bed biofilm reactorEcological ModelingChemical oxygen demandPollution6. Clean waterCold TemperatureWastewaterBiofilmsNitrificationAerationWater Pollutants ChemicalWater Research
researchProduct

Innovative, ecofriendly biosorbent-biodegrading biofilms for bioremediation of oil- contaminated water.

2019

Immobilization of microorganisms capable of degrading specific contaminants significantly promotes bioremediation processes. In this study, innovative and ecofriendly biosorbent-biodegrading biofilms have been developed in order to remediate oil-contaminated water. This was achieved by immobilizing hydrocarbon-degrading gammaproteobacteria and actinobacteria on biodegradable oil-adsorbing carriers, based on polylactic acid and polycaprolactone electrospun membranes. High capacities for adhesion and proliferation of bacterial cells were observed by scanning electron microscopy. The bioremediation efficiency of the systems, tested on crude oil and quantified by gas chromatography, showed that…

0106 biological sciencesChromatography GasMicroorganismBioengineeringOil-adsorbing electrospun membranesSettore BIO/19 - Microbiologia Generale01 natural sciencesActinobacteria03 medical and health scienceschemistry.chemical_compoundAdsorptionBioremediation010608 biotechnologyHydrocarbonoclastic bacteria (HCB)Petroleum PollutionMolecular BiologyEnvironmental Restoration and Remediation030304 developmental biology0303 health sciencesbiologyWater PollutionBiofilmSettore ING-IND/34 - Bioingegneria IndustrialeGeneral MedicineBiodegradationContaminationbiology.organism_classificationActinobacteriaBiodegradation EnvironmentalPetroleumchemistryEnvironmental chemistryBiofilmsPolycaprolactoneBiodegrading biofilmsAdsorptionBioremediationGammaproteobacteriaBiotechnologyNew biotechnology
researchProduct

Assessment and characterization of the bacterial community structure in advanced activated sludge systems

2019

Abstract The present study is aimed to assess and characterize the structure of bacterial community in advanced activated sludge systems. In particular, activated sludge samples were collected from an Integrated Fixed-film Activated Sludge – Membrane Bioreactor pilot plant under a University of Cape Town configuration with in-series anaerobic (Noair)/anoxic (Anox)/aerobic (Oxy) reactors – and further analyzed. The achieved results – based on Next Generation Sequencing (NGS) of 16S rDNA amplicons – revealed that the bacterial biofilm (bf) communities on plastic carriers of Oxy and Anox reactors had a greater diversity compared to suspended (sp) bacterial flocs of Oxy, Anox and Noair. Indeed,…

0106 biological sciencesEnvironmental EngineeringIFAS-MBRBiomassBioengineeringWastewater treatment010501 environmental sciencesMembrane bioreactor01 natural sciencesBioreactors010608 biotechnologyBiomassRhodobacteraceaeDNA extractionWaste Management and DisposalNGS of 16S rDNA amplicon0105 earth and related environmental sciencesSewageSettore ICAR/03 - Ingegneria Sanitaria-AmbientalebiologyRenewable Energy Sustainability and the EnvironmentChemistryMicrobiotaBiofilmGeneral Medicinebiology.organism_classificationPulp and paper industryAnoxic watersActivated sludgeBiofilmsSewage treatment16S rRNA geneBacterial communityBacteriaBioresource Technology
researchProduct

Deletion of GLX3 in Candida albicans affects temperature tolerance, biofilm formation and virulence.

2018

Candida albicans is a predominant cause of fungal infections in mucosal tissues as well as life-threatening bloodstream infections in immunocompromised patients. Within the human body, C. albicans is mostly embedded in biofilms, which provides increased resistance to antifungal drugs. The glyoxalase Glx3 is an abundant proteomic component of the biofilm extracellular matrix. Here, we document phenotypic studies of a glx3Δ null mutant concerning its role in biofilm formation, filamentation, antifungal drug resistance, cell wall integrity and virulence. First, consistent with its function as glyoxalase, the glx3 null mutant showed impaired growth on media containing glycerol as the carbon sou…

0106 biological sciencesHot TemperatureMutantAntifungal drugHyphaeVirulence01 natural sciencesApplied Microbiology and BiotechnologyMicrobiologyMicrobiology03 medical and health sciencesFilamentationCell Wall010608 biotechnologyCandida albicansAnimalsCandida albicans030304 developmental biology0303 health sciencesMice Inbred BALB CbiologyVirulenceBiofilmWild typeCandidiasisGeneral Medicinebiology.organism_classificationAldehyde OxidoreductasesSurvival AnalysisCorpus albicansDisease Models AnimalBiofilmsGene DeletionHeat-Shock ResponseFEMS yeast research
researchProduct

Integrated Fixed Film Activated Sludge (IFAS) membrane BioReactor: The influence of the operational parameters

2020

Abstract The present paper investigated an Integrated Fixed Film Activated Sludge (IFAS) Membrane BioReactor (MBR) system monitored for 340 days. In particular, the short-term effects of some operational parameters variation was evaluated. Results showed a decrease of the removal rates under low C/N values. Respirometry results highlighted that activated sludge was more active in the organic carbon removal. Conversely, biofilm has a key role during nitrification. The major fouling mechanism was represented by the cake deposition (irreversible).

0106 biological sciencesMembrane foulingEnvironmental EngineeringBiological nutrient removalBioengineering010501 environmental sciencesMembrane bioreactor01 natural sciencesRespirometryBioreactors010608 biotechnologyDeposition (phase transition)Waste Management and Disposal0105 earth and related environmental sciencesFoulingSewageSettore ICAR/03 - Ingegneria Sanitaria-AmbientaleRenewable Energy Sustainability and the EnvironmentChemistryMembrane foulingMembranes ArtificialGeneral MedicineRespirometryPulp and paper industryIFASNitrificationActivated sludgeBiofilmsMembrane bioreactorNitrification
researchProduct

Active packaging with antifungal activities.

2016

International audience; There have been many reviews concerned with antimicrobial food packaging, and with the use of antifungal compounds, but none provided an exhaustive picture of the applications of active packaging to control fungal spoilage. Very recently, many studies have been done in these fields, therefore it is timely to review this topic. This article examines the effects of essential oils, preservatives, natural products, chemical fungicides, nanopartides coated to different films, and chitosan in vitro on the growth of moulds, but also in vivo on the mould free shelf-life of bread, cheese, and fresh fruits and vegetables. A short section is also dedicated to yeasts. All the ap…

0106 biological sciencesPreservativeFood-additivesAntifungal AgentsControlled-release[ SDV.AEN ] Life Sciences [q-bio]/Food and NutritionFood spoilageActive packaging01 natural sciencesIn-vitroCheeseYeasts[SDV.IDA]Life Sciences [q-bio]/Food engineeringFood scienceFood PreservativesNatural productsbiologyChemistryNatural essential oils[ SDV.IDA ] Life Sciences [q-bio]/Food engineeringFood Packaging04 agricultural and veterinary sciencesGeneral MedicineBread040401 food scienceFood packagingCinnamon essential oilAspergillusEssential oilsPackagingPenicilliumfood.ingredientPotassium sorbateEnvironmentShelf lifeMicrobiology0404 agricultural biotechnologyfood010608 biotechnologyFood PreservationBotrytis-cinereaOils VolatileStarch edible filmsMouldChitosanFood additiveFungiPenicilliumbiology.organism_classificationshelf-lifeFoodFood PreservativesNanoparticles[SDV.AEN]Life Sciences [q-bio]/Food and NutritionPreservativesAspergillus-nigerFood ScienceInternational journal of food microbiology
researchProduct

Biological films adhering to the oral soft tissues: Structure, composition, and potential impact on taste perception

2018

The role of free-flowing saliva in taste perception is increasingly recognized, but saliva is also present in the mouth as films intimately associated to soft or hard tissues. On mucosal surfaces, particularly on the tongue, the structure and composition of such films (including its microbial constitutive part) may play a particular role in the sense of taste due to their proximity with the taste anatomical structures. This review compiles the current knowledge on the structure of biological films adhering to oral mucosae and on their biochemical and microbiological composition, before presenting possible implications for taste perception. PRACTICAL APPLICATIONS: The understanding of the ro…

0106 biological sciencesTastemedia_common.quotation_subjectAnatomical structuresPharmaceutical ScienceBacterial Physiological Phenomena01 natural sciencestasteOral soft tissues0404 agricultural biotechnologytongueTongue010608 biotechnologyPerceptionmicrobiotamedicineHumansComposition (language)media_commonMouthsalivaPotential impactCommunicationBacteriabusiness.industryMouth MucosaTaste PerceptionEpithelial Cells04 agricultural and veterinary sciencesTaste Buds040401 food sciencemedicine.anatomical_structuremucosal pellicleBiofilmsPsychologybusiness[SDV.AEN]Life Sciences [q-bio]/Food and NutritionFood ScienceJournal of Texture Studies
researchProduct